📄 fmpyfadd.c
字号:
add_exponent = Dbl_exponent(opnd3p1); /* * Check for denormalized or zero add operand. */ if (add_exponent == 0) { /* check for zero */ if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { /* right is zero */ /* Left can't be zero and must be result. * * The final result is now in tmpres and mpy_exponent, * and needs to be rounded and squeezed back into * double precision format from double extended. */ result_exponent = mpy_exponent; Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, resultp1,resultp2,resultp3,resultp4); sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ goto round; } /* * Neither are zeroes. * Adjust exponent and normalize add operand. */ sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */ Dbl_clear_signexponent(opnd3p1); Dbl_leftshiftby1(opnd3p1,opnd3p2); Dbl_normalize(opnd3p1,opnd3p2,add_exponent); Dbl_set_sign(opnd3p1,sign_save); /* restore sign */ } else { Dbl_clear_exponent_set_hidden(opnd3p1); } /* * Copy opnd3 to the double extended variable called right. */ Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); /* * A zero "save" helps discover equal operands (for later), * and is used in swapping operands (if needed). */ Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); /* * Compare magnitude of operands. */ Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ /* * Set the left operand to the larger one by XOR swap. * First finish the first word "save". */ Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, rightp2,rightp3,rightp4); /* also setup exponents used in rest of routine */ diff_exponent = add_exponent - mpy_exponent; result_exponent = add_exponent; } else { /* also setup exponents used in rest of routine */ diff_exponent = mpy_exponent - add_exponent; result_exponent = mpy_exponent; } /* Invariant: left is not smaller than right. */ /* * Special case alignment of operands that would force alignment * beyond the extent of the extension. A further optimization * could special case this but only reduces the path length for * this infrequent case. */ if (diff_exponent > DBLEXT_THRESHOLD) { diff_exponent = DBLEXT_THRESHOLD; } /* Align right operand by shifting it to the right */ Dblext_clear_sign(rightp1); Dblext_right_align(rightp1,rightp2,rightp3,rightp4, /*shifted by*/diff_exponent); /* Treat sum and difference of the operands separately. */ if ((int)save < 0) { /* * Difference of the two operands. Overflow can occur if the * multiply overflowed. A borrow can occur out of the hidden * bit and force a post normalization phase. */ Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, rightp1,rightp2,rightp3,rightp4, resultp1,resultp2,resultp3,resultp4); sign_save = Dbl_signextendedsign(resultp1); if (Dbl_iszero_hidden(resultp1)) { /* Handle normalization */ /* A straight foward algorithm would now shift the * result and extension left until the hidden bit * becomes one. Not all of the extension bits need * participate in the shift. Only the two most * significant bits (round and guard) are needed. * If only a single shift is needed then the guard * bit becomes a significant low order bit and the * extension must participate in the rounding. * If more than a single shift is needed, then all * bits to the right of the guard bit are zeros, * and the guard bit may or may not be zero. */ Dblext_leftshiftby1(resultp1,resultp2,resultp3, resultp4); /* Need to check for a zero result. The sign and * exponent fields have already been zeroed. The more * efficient test of the full object can be used. */ if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){ /* Must have been "x-x" or "x+(-x)". */ if (Is_rounding_mode(ROUNDMINUS)) Dbl_setone_sign(resultp1); Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } result_exponent--; /* Look to see if normalization is finished. */ if (Dbl_isone_hidden(resultp1)) { /* No further normalization is needed */ goto round; } /* Discover first one bit to determine shift amount. * Use a modified binary search. We have already * shifted the result one position right and still * not found a one so the remainder of the extension * must be zero and simplifies rounding. */ /* Scan bytes */ while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); result_exponent -= 8; } /* Now narrow it down to the nibble */ if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { /* The lower nibble contains the * normalizing one */ Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); result_exponent -= 4; } /* Select case where first bit is set (already * normalized) otherwise select the proper shift. */ jumpsize = Dbl_hiddenhigh3mantissa(resultp1); if (jumpsize <= 7) switch(jumpsize) { case 1: Dblext_leftshiftby3(resultp1,resultp2,resultp3, resultp4); result_exponent -= 3; break; case 2: case 3: Dblext_leftshiftby2(resultp1,resultp2,resultp3, resultp4); result_exponent -= 2; break; case 4: case 5: case 6: case 7: Dblext_leftshiftby1(resultp1,resultp2,resultp3, resultp4); result_exponent -= 1; break; } } /* end if (hidden...)... */ /* Fall through and round */ } /* end if (save < 0)... */ else { /* Add magnitudes */ Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, rightp1,rightp2,rightp3,rightp4, /*to*/resultp1,resultp2,resultp3,resultp4); sign_save = Dbl_signextendedsign(resultp1); if (Dbl_isone_hiddenoverflow(resultp1)) { /* Prenormalization required. */ Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, resultp4); result_exponent++; } /* end if hiddenoverflow... */ } /* end else ...add magnitudes... */ /* Round the result. If the extension and lower two words are * all zeros, then the result is exact. Otherwise round in the * correct direction. Underflow is possible. If a postnormalization * is necessary, then the mantissa is all zeros so no shift is needed. */ round: if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, result_exponent,is_tiny); } Dbl_set_sign(resultp1,/*using*/sign_save); if (Dblext_isnotzero_mantissap3(resultp3) || Dblext_isnotzero_mantissap4(resultp4)) { inexact = TRUE; switch(Rounding_mode()) { case ROUNDNEAREST: /* The default. */ if (Dblext_isone_highp3(resultp3)) { /* at least 1/2 ulp */ if (Dblext_isnotzero_low31p3(resultp3) || Dblext_isnotzero_mantissap4(resultp4) || Dblext_isone_lowp2(resultp2)) { /* either exactly half way and odd or * more than 1/2ulp */ Dbl_increment(resultp1,resultp2); } } break; case ROUNDPLUS: if (Dbl_iszero_sign(resultp1)) { /* Round up positive results */ Dbl_increment(resultp1,resultp2); } break; case ROUNDMINUS: if (Dbl_isone_sign(resultp1)) { /* Round down negative results */ Dbl_increment(resultp1,resultp2); } case ROUNDZERO:; /* truncate is simple */ } /* end switch... */ if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; } if (result_exponent >= DBL_INFINITY_EXPONENT) { /* trap if OVERFLOWTRAP enabled */ if (Is_overflowtrap_enabled()) { /* * Adjust bias of result */ Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); Dbl_copytoptr(resultp1,resultp2,dstptr); if (inexact) if (Is_inexacttrap_enabled()) return (OPC_2E_OVERFLOWEXCEPTION | OPC_2E_INEXACTEXCEPTION); else Set_inexactflag(); return (OPC_2E_OVERFLOWEXCEPTION); } inexact = TRUE; Set_overflowflag(); /* set result to infinity or largest number */ Dbl_setoverflow(resultp1,resultp2); } else if (result_exponent <= 0) { /* underflow case */ if (Is_underflowtrap_enabled()) { /* * Adjust bias of result */ Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); Dbl_copytoptr(resultp1,resultp2,dstptr); if (inexact) if (Is_inexacttrap_enabled()) return (OPC_2E_UNDERFLOWEXCEPTION | OPC_2E_INEXACTEXCEPTION); else Set_inexactflag(); return(OPC_2E_UNDERFLOWEXCEPTION); } else if (inexact && is_tiny) Set_underflowflag(); } else Dbl_set_exponent(resultp1,result_exponent); Dbl_copytoptr(resultp1,resultp2,dstptr); if (inexact) if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); else Set_inexactflag(); return(NOEXCEPTION);}/* * Double Floating-point Multiply Negate Fused Add */dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;unsigned int *status;{ unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; unsigned int rightp1, rightp2, rightp3, rightp4; unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; register int mpy_exponent, add_exponent, count; boolean inexact = FALSE, is_tiny = FALSE; unsigned int signlessleft1, signlessright1, save; register int result_exponent, diff_exponent; int sign_save, jumpsize; Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); /* * set sign bit of result of multiply */ if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) Dbl_setzerop1(resultp1); else Dbl_setnegativezerop1(resultp1); /* * Generate multiply exponent */ mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; /* * check first operand for NaN's or infinity */ if (Dbl_isinfinity_exponent(opnd1p1)) { if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { if (Dbl_isnotnan(opnd2p1,opnd2p2) && Dbl_isnotnan(opnd3p1,opnd3p2)) { if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { /* * invalid since operands are infinity * and zero */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); Set_invalidflag(); Dbl_makequietnan(resultp1,resultp2); Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } /* * Check third operand for infinity with a * sign opposite of the multiply result */ if (Dbl_isinfinity(opnd3p1,opnd3p2) && (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { /* * invalid since attempting a magnitude * subtraction of infinities */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); Set_invalidflag(); Dbl_makequietnan(resultp1,resultp2); Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } /* * return infinity */ Dbl_setinfinity_exponentmantissa(resultp1,resultp2); Dbl_copytoptr(resultp1,resultp2,dstptr); return(NOEXCEPTION); } } else { /* * is NaN; signaling or quiet? */ if (Dbl_isone_signaling(opnd1p1)) { /* trap if INVALIDTRAP enabled */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); /* make NaN quiet */ Set_invalidflag(); Dbl_set_quiet(opnd1p1); } /* * is second operand a signaling NaN? */ else if (Dbl_is_signalingnan(opnd2p1)) { /* trap if INVALIDTRAP enabled */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); /* make NaN quiet */ Set_invalidflag(); Dbl_set_quiet(opnd2p1); Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); return(NOEXCEPTION); } /* * is third operand a signaling NaN? */ else if (Dbl_is_signalingnan(opnd3p1)) { /* trap if INVALIDTRAP enabled */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); /* make NaN quiet */ Set_invalidflag(); Dbl_set_quiet(opnd3p1); Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); return(NOEXCEPTION); } /* * return quiet NaN */ Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); return(NOEXCEPTION); } } /* * check second operand for NaN's or infinity */ if (Dbl_isinfinity_exponent(opnd2p1)) { if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { if (Dbl_isnotnan(opnd3p1,opnd3p2)) { if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { /* * invalid since multiply operands are * zero & infinity */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); Set_invalidflag(); Dbl_makequietnan(opnd2p1,opnd2p2); Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); return(NOEXCEPTION); } /* * Check third operand for infinity with a * sign opposite of the multiply result */ if (Dbl_isinfinity(opnd3p1,opnd3p2) && (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { /* * invalid since attempting a magnitude * subtraction of infinities
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -