📄 iseries_setup.c
字号:
/* * * * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu> * * Module name: iSeries_setup.c * * Description: * Architecture- / platform-specific boot-time initialization code for * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek * <dan@net4x.com>. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/config.h>#include <linux/init.h>#include <linux/threads.h>#include <linux/smp.h>#include <linux/param.h>#include <linux/string.h>#include <linux/bootmem.h>#include <linux/blk.h>#include <linux/seq_file.h>#include <asm/processor.h>#include <asm/machdep.h>#include <asm/page.h>#include <asm/mmu.h>#include <asm/pgtable.h>#include <asm/mmu_context.h>#include <asm/time.h>#include "iSeries_setup.h"#include <asm/naca.h>#include <asm/paca.h>#include <asm/iSeries/LparData.h>#include <asm/iSeries/HvCallHpt.h>#include <asm/iSeries/HvLpConfig.h>#include <asm/iSeries/HvCallEvent.h>#include <asm/iSeries/HvCallSm.h>#include <asm/iSeries/HvCallXm.h>#include <asm/iSeries/ItLpQueue.h>#include <asm/iSeries/IoHriMainStore.h>#include <asm/iSeries/iSeries_proc.h>#include <asm/proc_pmc.h>#include <asm/perfmon.h>#include <asm/iSeries/mf.h>/* Function Prototypes */extern void abort(void);#ifdef CONFIG_PPC_ISERIESstatic void build_iSeries_Memory_Map( void );static void setup_iSeries_cache_sizes( void );static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr);#endifextern void ppcdbg_initialize(void);extern void iSeries_pcibios_init(void);extern void iSeries_pcibios_fixup(void);extern void iSeries_pcibios_fixup_bus(int);/* Global Variables */static unsigned long procFreqHz = 0;static unsigned long procFreqMhz = 0;static unsigned long procFreqMhzHundreths = 0;static unsigned long tbFreqHz = 0;static unsigned long tbFreqMhz = 0;static unsigned long tbFreqMhzHundreths = 0;int piranha_simulator = 0;extern char _end[];extern int rd_size; /* Defined in drivers/block/rd.c */extern unsigned long klimit;extern unsigned long embedded_sysmap_start;extern unsigned long embedded_sysmap_end;extern unsigned long iSeries_recal_tb;extern unsigned long iSeries_recal_titan;extern char _stext;extern char _etext;static int mf_initialized = 0;struct MemoryBlock { unsigned long absStart; unsigned long absEnd; unsigned long logicalStart; unsigned long logicalEnd;};/* * Process the main store vpd to determine where the holes in memory are * and return the number of physical blocks and fill in the array of * block data. */unsigned long iSeries_process_Condor_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries ){ /* Determine if absolute memory has any * holes so that we can interpret the * access map we get back from the hypervisor * correctly. */ unsigned long holeFirstChunk, holeSizeChunks; unsigned long numMemoryBlocks = 1; struct IoHriMainStoreSegment4 * msVpd = (struct IoHriMainStoreSegment4 *)xMsVpd; unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr; unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr; unsigned long holeSize = holeEnd - holeStart; printk("Mainstore_VPD: Condor\n"); mb_array[0].logicalStart = 0; mb_array[0].logicalEnd = 0x100000000; mb_array[0].absStart = 0; mb_array[0].absEnd = 0x100000000; if ( holeSize ) { numMemoryBlocks = 2; holeStart = holeStart & 0x000fffffffffffff; holeStart = addr_to_chunk(holeStart); holeFirstChunk = holeStart; holeSize = addr_to_chunk(holeSize); holeSizeChunks = holeSize; printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n", holeFirstChunk, holeSizeChunks ); mb_array[0].logicalEnd = holeFirstChunk; mb_array[0].absEnd = holeFirstChunk; mb_array[1].logicalStart = holeFirstChunk; mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks; mb_array[1].absStart = holeFirstChunk + holeSizeChunks; mb_array[1].absEnd = 0x100000000; } return numMemoryBlocks;}#define MaxSegmentAreas 32#define MaxSegmentAdrRangeBlocks 128#define MaxAreaRangeBlocks 4unsigned long iSeries_process_Regatta_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries ){ struct IoHriMainStoreSegment5 * msVpdP = (struct IoHriMainStoreSegment5 *)xMsVpd; unsigned long numSegmentBlocks = 0; u32 existsBits = msVpdP->msAreaExists; unsigned long area_num; printk("Mainstore_VPD: Regatta\n"); for ( area_num = 0; area_num < MaxSegmentAreas; ++area_num ) { unsigned long numAreaBlocks; struct IoHriMainStoreArea4 * currentArea; if ( existsBits & 0x80000000 ) { unsigned long block_num; currentArea = &msVpdP->msAreaArray[area_num]; numAreaBlocks = currentArea->numAdrRangeBlocks; printk("ms_vpd: processing area %2ld blocks=%ld", area_num, numAreaBlocks); for ( block_num = 0; block_num < numAreaBlocks; ++block_num ) { /* Process an address range block */ struct MemoryBlock tempBlock; unsigned long i; tempBlock.absStart = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart; tempBlock.absEnd = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd; tempBlock.logicalStart = 0; tempBlock.logicalEnd = 0; printk("\n block %ld absStart=%016lx absEnd=%016lx", block_num, tempBlock.absStart, tempBlock.absEnd); for ( i=0; i<numSegmentBlocks; ++i ) { if ( mb_array[i].absStart == tempBlock.absStart ) break; } if ( i == numSegmentBlocks ) { if ( numSegmentBlocks == max_entries ) { panic("iSeries_process_mainstore_vpd: too many memory blocks"); } mb_array[numSegmentBlocks] = tempBlock; ++numSegmentBlocks; } else { printk(" (duplicate)"); } } printk("\n"); } existsBits <<= 1; } /* Now sort the blocks found into ascending sequence */ if ( numSegmentBlocks > 1 ) { unsigned long m, n; for ( m=0; m<numSegmentBlocks-1; ++m ) { for ( n=numSegmentBlocks-1; m<n; --n ) { if ( mb_array[n].absStart < mb_array[n-1].absStart ) { struct MemoryBlock tempBlock; tempBlock = mb_array[n]; mb_array[n] = mb_array[n-1]; mb_array[n-1] = tempBlock; } } } } /* Assign "logical" addresses to each block. These * addresses correspond to the hypervisor "bitmap" space. * Convert all addresses into units of 256K chunks. */ { unsigned long i, nextBitmapAddress; printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks); nextBitmapAddress = 0; for ( i=0; i<numSegmentBlocks; ++i ) { unsigned long length = mb_array[i].absEnd - mb_array[i].absStart; mb_array[i].logicalStart = nextBitmapAddress; mb_array[i].logicalEnd = nextBitmapAddress + length; nextBitmapAddress += length; printk(" Bitmap range: %016lx - %016lx\n" " Absolute range: %016lx - %016lx\n", mb_array[i].logicalStart, mb_array[i].logicalEnd, mb_array[i].absStart, mb_array[i].absEnd); mb_array[i].absStart = addr_to_chunk( mb_array[i].absStart & 0x000fffffffffffff ); mb_array[i].absEnd = addr_to_chunk( mb_array[i].absEnd & 0x000fffffffffffff ); mb_array[i].logicalStart = addr_to_chunk( mb_array[i].logicalStart ); mb_array[i].logicalEnd = addr_to_chunk( mb_array[i].logicalEnd ); } } return numSegmentBlocks;}unsigned long iSeries_process_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries ){ unsigned long i; unsigned long mem_blocks = 0; if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p)) mem_blocks = iSeries_process_Regatta_mainstore_vpd( mb_array, max_entries ); else mem_blocks = iSeries_process_Condor_mainstore_vpd( mb_array, max_entries ); printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks); for ( i=0; i<mem_blocks; ++i ) { printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n" " abs chunks %016lx - %016lx\n", i, mb_array[i].logicalStart, mb_array[i].logicalEnd, mb_array[i].absStart, mb_array[i].absEnd); } return mem_blocks;}/* * void __init iSeries_init_early() */void __initiSeries_init_early(void){#ifdef CONFIG_PPC_ISERIES#if defined(CONFIG_BLK_DEV_INITRD) /* * If the init RAM disk has been configured and there is * a non-zero starting address for it, set it up */ if ( naca->xRamDisk ) { initrd_start = (unsigned long)__va(naca->xRamDisk); initrd_end = initrd_start + naca->xRamDiskSize * PAGE_SIZE; initrd_below_start_ok = 1; // ramdisk in kernel space ROOT_DEV = MKDEV( RAMDISK_MAJOR, 0 ); if ( ((rd_size*1024)/PAGE_SIZE) < naca->xRamDiskSize ) rd_size = (naca->xRamDiskSize*PAGE_SIZE)/1024; } else #endif /* CONFIG_BLK_DEV_INITRD */ { /* ROOT_DEV = MKDEV( VIODASD_MAJOR, 1 ); */ } iSeries_recal_tb = get_tb(); iSeries_recal_titan = HvCallXm_loadTod(); ppc_md.setup_arch = iSeries_setup_arch; ppc_md.setup_residual = iSeries_setup_residual; ppc_md.get_cpuinfo = iSeries_get_cpuinfo; ppc_md.irq_cannonicalize = NULL; ppc_md.init_IRQ = iSeries_init_IRQ; ppc_md.init_ras_IRQ = NULL; ppc_md.get_irq = iSeries_get_irq; ppc_md.init = NULL; ppc_md.pcibios_fixup = iSeries_pcibios_fixup; ppc_md.pcibios_fixup_bus = iSeries_pcibios_fixup_bus; ppc_md.restart = iSeries_restart; ppc_md.power_off = iSeries_power_off; ppc_md.halt = iSeries_halt; ppc_md.time_init = NULL; ppc_md.get_boot_time = iSeries_get_boot_time; ppc_md.set_rtc_time = iSeries_set_rtc_time; ppc_md.get_rtc_time = iSeries_get_rtc_time; ppc_md.calibrate_decr = iSeries_calibrate_decr; ppc_md.progress = iSeries_progress; ppc_md.kbd_setkeycode = NULL; ppc_md.kbd_getkeycode = NULL; ppc_md.kbd_translate = NULL; ppc_md.kbd_unexpected_up = NULL; ppc_md.kbd_leds = NULL; ppc_md.kbd_init_hw = NULL;#if defined(CONFIG_MAGIC_SYSRQ) ppc_md.ppc_kbd_sysrq_xlate = NULL;#endif hpte_init_iSeries(); tce_init_iSeries(); /* Initialize the table which translate Linux physical addresses to * AS/400 absolute addresses */ build_iSeries_Memory_Map(); setup_iSeries_cache_sizes(); /* Initialize machine-dependency vectors */#ifdef CONFIG_SMP smp_init_iSeries();#endif if ( itLpNaca.xPirEnvironMode == 0 ) piranha_simulator = 1;#endif}/* * void __init iSeries_init() */void __initiSeries_init(unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7){ /* Associate Lp Event Queue 0 with processor 0 */ HvCallEvent_setLpEventQueueInterruptProc( 0, 0 ); { /* copy the command line parameter from the primary VSP */ char *p, *q; HvCallEvent_dmaToSp( cmd_line, 2*64*1024, 256, HvLpDma_Direction_RemoteToLocal ); p = q = cmd_line + 255; while( p > cmd_line ) { if ((*p == 0) || (*p == ' ') || (*p == '\n')) --p; else break; } if ( p < q ) *(p+1) = 0; } iSeries_proc_early_init(); mf_init(); mf_initialized = 1; mb(); iSeries_proc_callback( &pmc_proc_init );}#ifdef CONFIG_PPC_ISERIES/* * The iSeries may have very large memories ( > 128 GB ) and a partition * may get memory in "chunks" that may be anywhere in the 2**52 real * address space. The chunks are 256K in size. To map this to the * memory model Linux expects, the AS/400 specific code builds a * translation table to translate what Linux thinks are "physical" * addresses to the actual real addresses. This allows us to make * it appear to Linux that we have contiguous memory starting at * physical address zero while in fact this could be far from the truth. * To avoid confusion, I'll let the words physical and/or real address * apply to the Linux addresses while I'll use "absolute address" to * refer to the actual hardware real address. * * build_iSeries_Memory_Map gets information from the Hypervisor and * looks at the Main Store VPD to determine the absolute addresses * of the memory that has been assigned to our partition and builds * a table used to translate Linux's physical addresses to these * absolute addresses. Absolute addresses are needed when * communicating with the hypervisor (e.g. to build HPT entries) */static void __init build_iSeries_Memory_Map(void){ u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize; u32 nextPhysChunk; u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages; u32 num_ptegs; u32 totalChunks,moreChunks;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -