⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 iseries_setup.c

📁 这个linux源代码是很全面的~基本完整了~使用c编译的~由于时间问题我没有亲自测试~但就算用来做参考资料也是非常好的
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *  * *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com> *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu> * *    Module name: iSeries_setup.c * *    Description: *      Architecture- / platform-specific boot-time initialization code for *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek *      <dan@net4x.com>. * *      This program is free software; you can redistribute it and/or *      modify it under the terms of the GNU General Public License *      as published by the Free Software Foundation; either version *      2 of the License, or (at your option) any later version. */ #include <linux/config.h>#include <linux/init.h>#include <linux/threads.h>#include <linux/smp.h>#include <linux/param.h>#include <linux/string.h>#include <linux/bootmem.h>#include <linux/blk.h>#include <linux/seq_file.h>#include <asm/processor.h>#include <asm/machdep.h>#include <asm/page.h>#include <asm/mmu.h>#include <asm/pgtable.h>#include <asm/mmu_context.h>#include <asm/time.h>#include "iSeries_setup.h"#include <asm/naca.h>#include <asm/paca.h>#include <asm/iSeries/LparData.h>#include <asm/iSeries/HvCallHpt.h>#include <asm/iSeries/HvLpConfig.h>#include <asm/iSeries/HvCallEvent.h>#include <asm/iSeries/HvCallSm.h>#include <asm/iSeries/HvCallXm.h>#include <asm/iSeries/ItLpQueue.h>#include <asm/iSeries/IoHriMainStore.h>#include <asm/iSeries/iSeries_proc.h>#include <asm/proc_pmc.h>#include <asm/perfmon.h>#include <asm/iSeries/mf.h>/* Function Prototypes */extern void abort(void);#ifdef CONFIG_PPC_ISERIESstatic void build_iSeries_Memory_Map( void );static void setup_iSeries_cache_sizes( void );static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr);#endifextern void ppcdbg_initialize(void);extern void iSeries_pcibios_init(void);extern void iSeries_pcibios_fixup(void);extern void iSeries_pcibios_fixup_bus(int);/* Global Variables */static unsigned long procFreqHz = 0;static unsigned long procFreqMhz = 0;static unsigned long procFreqMhzHundreths = 0;static unsigned long tbFreqHz = 0;static unsigned long tbFreqMhz = 0;static unsigned long tbFreqMhzHundreths = 0;int piranha_simulator = 0;extern char _end[];extern int rd_size;		/* Defined in drivers/block/rd.c */extern unsigned long klimit;extern unsigned long embedded_sysmap_start;extern unsigned long embedded_sysmap_end;extern unsigned long iSeries_recal_tb;extern unsigned long iSeries_recal_titan;extern char _stext;extern char _etext;static int mf_initialized = 0;struct MemoryBlock {	unsigned long absStart;	unsigned long absEnd;	unsigned long logicalStart;	unsigned long logicalEnd;};/* * Process the main store vpd to determine where the holes in memory are * and return the number of physical blocks and fill in the array of * block data. */unsigned long iSeries_process_Condor_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries ){	/* Determine if absolute memory has any	 * holes so that we can interpret the	 * access map we get back from the hypervisor	 * correctly.	 */		unsigned long holeFirstChunk, holeSizeChunks;	unsigned long numMemoryBlocks = 1;	struct IoHriMainStoreSegment4 * msVpd = (struct IoHriMainStoreSegment4 *)xMsVpd;	unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;	unsigned long holeEnd   = msVpd->nonInterleavedBlocksEndAdr;	unsigned long holeSize = holeEnd - holeStart;	printk("Mainstore_VPD: Condor\n");	mb_array[0].logicalStart = 0;	mb_array[0].logicalEnd   = 0x100000000;	mb_array[0].absStart     = 0;	mb_array[0].absEnd       = 0x100000000;	if ( holeSize ) {		numMemoryBlocks = 2;		holeStart = holeStart & 0x000fffffffffffff;		holeStart = addr_to_chunk(holeStart);		holeFirstChunk = holeStart;		holeSize = addr_to_chunk(holeSize);		holeSizeChunks = holeSize;		printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",				holeFirstChunk, holeSizeChunks );		mb_array[0].logicalEnd   = holeFirstChunk;		mb_array[0].absEnd       = holeFirstChunk;		mb_array[1].logicalStart = holeFirstChunk;		mb_array[1].logicalEnd   = 0x100000000 - holeSizeChunks;		mb_array[1].absStart     = holeFirstChunk + holeSizeChunks;		mb_array[1].absEnd       = 0x100000000;	}		return numMemoryBlocks;}#define MaxSegmentAreas 32#define MaxSegmentAdrRangeBlocks 128#define MaxAreaRangeBlocks 4unsigned long iSeries_process_Regatta_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries ){	struct IoHriMainStoreSegment5 * msVpdP = (struct IoHriMainStoreSegment5 *)xMsVpd;	unsigned long numSegmentBlocks = 0;	u32 existsBits = msVpdP->msAreaExists;	unsigned long area_num;	printk("Mainstore_VPD: Regatta\n");	for ( area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {		unsigned long numAreaBlocks;		struct IoHriMainStoreArea4 * currentArea;		if ( existsBits & 0x80000000 ) {			unsigned long block_num;			currentArea = &msVpdP->msAreaArray[area_num];			numAreaBlocks = currentArea->numAdrRangeBlocks;			printk("ms_vpd: processing area %2ld  blocks=%ld", area_num, numAreaBlocks);			for ( block_num = 0; block_num < numAreaBlocks; ++block_num ) {				/* Process an address range block */				struct MemoryBlock tempBlock;				unsigned long i;				tempBlock.absStart = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;				tempBlock.absEnd   = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;				tempBlock.logicalStart = 0;				tempBlock.logicalEnd   = 0;				printk("\n          block %ld absStart=%016lx absEnd=%016lx", block_num,							tempBlock.absStart, tempBlock.absEnd);				for ( i=0; i<numSegmentBlocks; ++i ) {					if ( mb_array[i].absStart == tempBlock.absStart )						break;				}				if ( i == numSegmentBlocks ) {					if ( numSegmentBlocks == max_entries ) {						panic("iSeries_process_mainstore_vpd: too many memory blocks");					}					mb_array[numSegmentBlocks] = tempBlock;					++numSegmentBlocks;				}				else {					printk(" (duplicate)");				}			}			printk("\n");		}		existsBits <<= 1;	}	/* Now sort the blocks found into ascending sequence */	if ( numSegmentBlocks > 1 ) {		unsigned long m, n;		for ( m=0; m<numSegmentBlocks-1; ++m ) {			for ( n=numSegmentBlocks-1; m<n; --n ) {				if ( mb_array[n].absStart < mb_array[n-1].absStart ) {					struct MemoryBlock tempBlock;					tempBlock = mb_array[n];					mb_array[n] = mb_array[n-1];					mb_array[n-1] = tempBlock;				}							}		}	}	/* Assign "logical" addresses to each block.  These	 * addresses correspond to the hypervisor "bitmap" space.	 * Convert all addresses into units of 256K chunks.	 */	{	unsigned long i, nextBitmapAddress;	printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);	nextBitmapAddress = 0;	for ( i=0; i<numSegmentBlocks; ++i ) {		unsigned long length = mb_array[i].absEnd - mb_array[i].absStart;		mb_array[i].logicalStart = nextBitmapAddress;		mb_array[i].logicalEnd = nextBitmapAddress + length;		nextBitmapAddress += length;		printk("          Bitmap range: %016lx - %016lx\n"		       "        Absolute range: %016lx - %016lx\n",				mb_array[i].logicalStart, mb_array[i].logicalEnd, 				mb_array[i].absStart, mb_array[i].absEnd);		mb_array[i].absStart     = addr_to_chunk( mb_array[i].absStart & 0x000fffffffffffff );		mb_array[i].absEnd       = addr_to_chunk( mb_array[i].absEnd & 0x000fffffffffffff );		mb_array[i].logicalStart = addr_to_chunk( mb_array[i].logicalStart );		mb_array[i].logicalEnd   = addr_to_chunk( mb_array[i].logicalEnd );	}	}	return numSegmentBlocks;}unsigned long iSeries_process_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries ){	unsigned long i;	unsigned long mem_blocks = 0;	if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p))		mem_blocks = iSeries_process_Regatta_mainstore_vpd( mb_array, max_entries );	else		mem_blocks = iSeries_process_Condor_mainstore_vpd( mb_array, max_entries );	printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);	for ( i=0; i<mem_blocks; ++i ) {		printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"		       "                             abs chunks %016lx - %016lx\n",			i, mb_array[i].logicalStart, mb_array[i].logicalEnd,			mb_array[i].absStart, mb_array[i].absEnd);	}	return mem_blocks;}/* * void __init iSeries_init_early() */void __initiSeries_init_early(void){#ifdef CONFIG_PPC_ISERIES#if defined(CONFIG_BLK_DEV_INITRD)	/*	 * If the init RAM disk has been configured and there is	 * a non-zero starting address for it, set it up	 */	if ( naca->xRamDisk ) {		initrd_start = (unsigned long)__va(naca->xRamDisk);		initrd_end   = initrd_start + naca->xRamDiskSize * PAGE_SIZE;		initrd_below_start_ok = 1;	// ramdisk in kernel space		ROOT_DEV = MKDEV( RAMDISK_MAJOR, 0 );		if ( ((rd_size*1024)/PAGE_SIZE) < naca->xRamDiskSize )			rd_size = (naca->xRamDiskSize*PAGE_SIZE)/1024;	} else	#endif /* CONFIG_BLK_DEV_INITRD */	  {                	    /*		ROOT_DEV = MKDEV( VIODASD_MAJOR, 1 ); */	  }	iSeries_recal_tb = get_tb();	iSeries_recal_titan = HvCallXm_loadTod();	ppc_md.setup_arch	 	= iSeries_setup_arch;	ppc_md.setup_residual	 	= iSeries_setup_residual;	ppc_md.get_cpuinfo	 	= iSeries_get_cpuinfo;	ppc_md.irq_cannonicalize 	= NULL;	ppc_md.init_IRQ		 	= iSeries_init_IRQ;	ppc_md.init_ras_IRQ		= NULL;	ppc_md.get_irq		 	= iSeries_get_irq;	ppc_md.init		 	= NULL; 	ppc_md.pcibios_fixup        = iSeries_pcibios_fixup;	ppc_md.pcibios_fixup_bus    = iSeries_pcibios_fixup_bus;	ppc_md.restart		 	= iSeries_restart;	ppc_md.power_off	 	= iSeries_power_off;	ppc_md.halt		 	= iSeries_halt;	ppc_md.time_init	 	= NULL;	ppc_md.get_boot_time    = iSeries_get_boot_time;	ppc_md.set_rtc_time	 	= iSeries_set_rtc_time;	ppc_md.get_rtc_time	 	= iSeries_get_rtc_time;	ppc_md.calibrate_decr	 	= iSeries_calibrate_decr;	ppc_md.progress			= iSeries_progress;	ppc_md.kbd_setkeycode    	= NULL;	ppc_md.kbd_getkeycode    	= NULL;	ppc_md.kbd_translate     	= NULL;	ppc_md.kbd_unexpected_up 	= NULL;	ppc_md.kbd_leds          	= NULL;	ppc_md.kbd_init_hw       	= NULL;#if defined(CONFIG_MAGIC_SYSRQ)	ppc_md.ppc_kbd_sysrq_xlate	= NULL;#endif		hpte_init_iSeries();	tce_init_iSeries();	/* Initialize the table which translate Linux physical addresses to	 * AS/400 absolute addresses	 */	build_iSeries_Memory_Map();	setup_iSeries_cache_sizes();	/* Initialize machine-dependency vectors */#ifdef CONFIG_SMP	smp_init_iSeries();#endif	if ( itLpNaca.xPirEnvironMode == 0 ) 		piranha_simulator = 1;#endif}/* * void __init iSeries_init() */void __initiSeries_init(unsigned long r3, unsigned long r4, unsigned long r5, 	   unsigned long r6, unsigned long r7){	/* Associate Lp Event Queue 0 with processor 0 */	HvCallEvent_setLpEventQueueInterruptProc( 0, 0 );	{		/* copy the command line parameter from the primary VSP  */		char *p, *q;		HvCallEvent_dmaToSp( cmd_line,				     2*64*1024,				     256,				     HvLpDma_Direction_RemoteToLocal );		p = q = cmd_line + 255;		while( p > cmd_line ) {			if ((*p == 0) || (*p == ' ') || (*p == '\n'))				--p;			else				break;		}		if ( p < q )			*(p+1) = 0;	}	iSeries_proc_early_init();		mf_init();	mf_initialized = 1;	mb();	iSeries_proc_callback( &pmc_proc_init );}#ifdef CONFIG_PPC_ISERIES/* * The iSeries may have very large memories ( > 128 GB ) and a partition * may get memory in "chunks" that may be anywhere in the 2**52 real * address space.  The chunks are 256K in size.  To map this to the  * memory model Linux expects, the AS/400 specific code builds a  * translation table to translate what Linux thinks are "physical" * addresses to the actual real addresses.  This allows us to make  * it appear to Linux that we have contiguous memory starting at * physical address zero while in fact this could be far from the truth. * To avoid confusion, I'll let the words physical and/or real address  * apply to the Linux addresses while I'll use "absolute address" to  * refer to the actual hardware real address. * * build_iSeries_Memory_Map gets information from the Hypervisor and  * looks at the Main Store VPD to determine the absolute addresses * of the memory that has been assigned to our partition and builds * a table used to translate Linux's physical addresses to these * absolute addresses.  Absolute addresses are needed when  * communicating with the hypervisor (e.g. to build HPT entries) */static void __init build_iSeries_Memory_Map(void){	u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;	u32 nextPhysChunk;	u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;	u32 num_ptegs;	u32 totalChunks,moreChunks;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -