📄 bindec.s
字号:
|| bindec.sa 3.4 1/3/91|| bindec|| Description:| Converts an input in extended precision format| to bcd format.|| Input:| a0 points to the input extended precision value| value in memory; d0 contains the k-factor sign-extended| to 32-bits. The input may be either normalized,| unnormalized, or denormalized.|| Output: result in the FP_SCR1 space on the stack.|| Saves and Modifies: D2-D7,A2,FP2|| Algorithm:|| A1. Set RM and size ext; Set SIGMA = sign of input. | The k-factor is saved for use in d7. Clear the| BINDEC_FLG for separating normalized/denormalized| input. If input is unnormalized or denormalized,| normalize it.|| A2. Set X = abs(input).|| A3. Compute ILOG.| ILOG is the log base 10 of the input value. It is| approximated by adding e + 0.f when the original | value is viewed as 2^^e * 1.f in extended precision. | This value is stored in d6.|| A4. Clr INEX bit.| The operation in A3 above may have set INEX2. || A5. Set ICTR = 0;| ICTR is a flag used in A13. It must be set before the | loop entry A6.|| A6. Calculate LEN.| LEN is the number of digits to be displayed. The| k-factor can dictate either the total number of digits,| if it is a positive number, or the number of digits| after the decimal point which are to be included as| significant. See the 68882 manual for examples.| If LEN is computed to be greater than 17, set OPERR in| USER_FPSR. LEN is stored in d4.|| A7. Calculate SCALE.| SCALE is equal to 10^ISCALE, where ISCALE is the number| of decimal places needed to insure LEN integer digits| in the output before conversion to bcd. LAMBDA is the| sign of ISCALE, used in A9. Fp1 contains| 10^^(abs(ISCALE)) using a rounding mode which is a| function of the original rounding mode and the signs| of ISCALE and X. A table is given in the code.|| A8. Clr INEX; Force RZ.| The operation in A3 above may have set INEX2. | RZ mode is forced for the scaling operation to insure| only one rounding error. The grs bits are collected in | the INEX flag for use in A10.|| A9. Scale X -> Y.| The mantissa is scaled to the desired number of| significant digits. The excess digits are collected| in INEX2.|| A10. Or in INEX.| If INEX is set, round error occurred. This is| compensated for by 'or-ing' in the INEX2 flag to| the lsb of Y.|| A11. Restore original FPCR; set size ext.| Perform FINT operation in the user's rounding mode.| Keep the size to extended.|| A12. Calculate YINT = FINT(Y) according to user's rounding| mode. The FPSP routine sintd0 is used. The output| is in fp0.|| A13. Check for LEN digits.| If the int operation results in more than LEN digits,| or less than LEN -1 digits, adjust ILOG and repeat from| A6. This test occurs only on the first pass. If the| result is exactly 10^LEN, decrement ILOG and divide| the mantissa by 10.|| A14. Convert the mantissa to bcd.| The binstr routine is used to convert the LEN digit | mantissa to bcd in memory. The input to binstr is| to be a fraction; i.e. (mantissa)/10^LEN and adjusted| such that the decimal point is to the left of bit 63.| The bcd digits are stored in the correct position in | the final string area in memory.|| A15. Convert the exponent to bcd.| As in A14 above, the exp is converted to bcd and the| digits are stored in the final string.| Test the length of the final exponent string. If the| length is 4, set operr.|| A16. Write sign bits to final string.|| Implementation Notes:|| The registers are used as follows:|| d0: scratch; LEN input to binstr| d1: scratch| d2: upper 32-bits of mantissa for binstr| d3: scratch;lower 32-bits of mantissa for binstr| d4: LEN| d5: LAMBDA/ICTR| d6: ILOG| d7: k-factor| a0: ptr for original operand/final result| a1: scratch pointer| a2: pointer to FP_X; abs(original value) in ext| fp0: scratch| fp1: scratch| fp2: scratch| F_SCR1:| F_SCR2:| L_SCR1:| L_SCR2:| Copyright (C) Motorola, Inc. 1990| All Rights Reserved|| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA | The copyright notice above does not evidence any | actual or intended publication of such source code.|BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package .include "fpsp.h" |section 8| Constants in extended precisionLOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000| Constants in single precisionFONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000RBDTBL: .byte 0,0,0,0 .byte 3,3,2,2 .byte 3,2,2,3 .byte 2,3,3,2 |xref binstr |xref sintdo |xref ptenrn,ptenrm,ptenrp .global bindec .global sc_mulbindec: moveml %d2-%d7/%a2,-(%a7) fmovemx %fp0-%fp2,-(%a7)| A1. Set RM and size ext. Set SIGMA = sign input;| The k-factor is saved for use in d7. Clear BINDEC_FLG for| separating normalized/denormalized input. If the input| is a denormalized number, set the BINDEC_FLG memory word| to signal denorm. If the input is unnormalized, normalize| the input and test for denormalized result. | fmovel #rm_mode,%FPCR |set RM and ext movel (%a0),L_SCR2(%a6) |save exponent for sign check movel %d0,%d7 |move k-factor to d7 clrb BINDEC_FLG(%a6) |clr norm/denorm flag movew STAG(%a6),%d0 |get stag andiw #0xe000,%d0 |isolate stag bits beq A2_str |if zero, input is norm|| Normalize the denorm|un_de_norm: movew (%a0),%d0 andiw #0x7fff,%d0 |strip sign of normalized exp movel 4(%a0),%d1 movel 8(%a0),%d2norm_loop: subw #1,%d0 lsll #1,%d2 roxll #1,%d1 tstl %d1 bges norm_loop|| Test if the normalized input is denormalized| tstw %d0 bgts pos_exp |if greater than zero, it is a norm st BINDEC_FLG(%a6) |set flag for denormpos_exp: andiw #0x7fff,%d0 |strip sign of normalized exp movew %d0,(%a0) movel %d1,4(%a0) movel %d2,8(%a0)| A2. Set X = abs(input).|A2_str: movel (%a0),FP_SCR2(%a6) | move input to work space movel 4(%a0),FP_SCR2+4(%a6) | move input to work space movel 8(%a0),FP_SCR2+8(%a6) | move input to work space andil #0x7fffffff,FP_SCR2(%a6) |create abs(X)| A3. Compute ILOG.| ILOG is the log base 10 of the input value. It is approx-| imated by adding e + 0.f when the original value is viewed| as 2^^e * 1.f in extended precision. This value is stored| in d6.|| Register usage:| Input/Output| d0: k-factor/exponent| d2: x/x| d3: x/x| d4: x/x| d5: x/x| d6: x/ILOG| d7: k-factor/Unchanged| a0: ptr for original operand/final result| a1: x/x| a2: x/x| fp0: x/float(ILOG)| fp1: x/x| fp2: x/x| F_SCR1:x/x| F_SCR2:Abs(X)/Abs(X) with $3fff exponent| L_SCR1:x/x| L_SCR2:first word of X packed/Unchanged tstb BINDEC_FLG(%a6) |check for denorm beqs A3_cont |if clr, continue with norm movel #-4933,%d6 |force ILOG = -4933 bras A4_strA3_cont: movew FP_SCR2(%a6),%d0 |move exp to d0 movew #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff fmovex FP_SCR2(%a6),%fp0 |now fp0 has 1.f subw #0x3fff,%d0 |strip off bias faddw %d0,%fp0 |add in exp fsubs FONE,%fp0 |subtract off 1.0 fbge pos_res |if pos, branch fmulx LOG2UP1,%fp0 |if neg, mul by LOG2UP1 fmovel %fp0,%d6 |put ILOG in d6 as a lword bras A4_str |go move out ILOGpos_res: fmulx LOG2,%fp0 |if pos, mul by LOG2 fmovel %fp0,%d6 |put ILOG in d6 as a lword| A4. Clr INEX bit.| The operation in A3 above may have set INEX2. A4_str: fmovel #0,%FPSR |zero all of fpsr - nothing needed| A5. Set ICTR = 0;| ICTR is a flag used in A13. It must be set before the | loop entry A6. The lower word of d5 is used for ICTR. clrw %d5 |clear ICTR| A6. Calculate LEN.| LEN is the number of digits to be displayed. The k-factor| can dictate either the total number of digits, if it is| a positive number, or the number of digits after the| original decimal point which are to be included as| significant. See the 68882 manual for examples.| If LEN is computed to be greater than 17, set OPERR in| USER_FPSR. LEN is stored in d4.|| Register usage:| Input/Output| d0: exponent/Unchanged| d2: x/x/scratch| d3: x/x| d4: exc picture/LEN| d5: ICTR/Unchanged| d6: ILOG/Unchanged| d7: k-factor/Unchanged| a0: ptr for original operand/final result| a1: x/x| a2: x/x| fp0: float(ILOG)/Unchanged| fp1: x/x| fp2: x/x| F_SCR1:x/x| F_SCR2:Abs(X) with $3fff exponent/Unchanged| L_SCR1:x/x| L_SCR2:first word of X packed/UnchangedA6_str: tstl %d7 |branch on sign of k bles k_neg |if k <= 0, LEN = ILOG + 1 - k movel %d7,%d4 |if k > 0, LEN = k bras len_ck |skip to LEN checkk_neg: movel %d6,%d4 |first load ILOG to d4 subl %d7,%d4 |subtract off k addql #1,%d4 |add in the 1len_ck: tstl %d4 |LEN check: branch on sign of LEN bles LEN_ng |if neg, set LEN = 1 cmpl #17,%d4 |test if LEN > 17 bles A7_str |if not, forget it movel #17,%d4 |set max LEN = 17 tstl %d7 |if negative, never set OPERR bles A7_str |if positive, continue orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR bras A7_str |finished hereLEN_ng: moveql #1,%d4 |min LEN is 1| A7. Calculate SCALE.| SCALE is equal to 10^ISCALE, where ISCALE is the number| of decimal places needed to insure LEN integer digits| in the output before conversion to bcd. LAMBDA is the sign| of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using| the rounding mode as given in the following table (see| Coonen, p. 7.23 as ref.; however, the SCALE variable is| of opposite sign in bindec.sa from Coonen).|| Initial USE| FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]| ----------------------------------------------| RN 00 0 0 00/0 RN| RN 00 0 1 00/0 RN| RN 00 1 0 00/0 RN| RN 00 1 1 00/0 RN| RZ 01 0 0 11/3 RP| RZ 01 0 1 11/3 RP| RZ 01 1 0 10/2 RM| RZ 01 1 1 10/2 RM| RM 10 0 0 11/3 RP| RM 10 0 1 10/2 RM| RM 10 1 0 10/2 RM| RM 10 1 1 11/3 RP| RP 11 0 0 10/2 RM| RP 11 0 1 11/3 RP| RP 11 1 0 11/3 RP| RP 11 1 1 10/2 RM|| Register usage:| Input/Output| d0: exponent/scratch - final is 0| d2: x/0 or 24 for A9| d3: x/scratch - offset ptr into PTENRM array| d4: LEN/Unchanged| d5: 0/ICTR:LAMBDA| d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))| d7: k-factor/Unchanged| a0: ptr for original operand/final result| a1: x/ptr to PTENRM array| a2: x/x| fp0: float(ILOG)/Unchanged| fp1: x/10^ISCALE| fp2: x/x| F_SCR1:x/x| F_SCR2:Abs(X) with $3fff exponent/Unchanged| L_SCR1:x/x| L_SCR2:first word of X packed/UnchangedA7_str: tstl %d7 |test sign of k bgts k_pos |if pos and > 0, skip this cmpl %d6,%d7 |test k - ILOG blts k_pos |if ILOG >= k, skip this movel %d7,%d6 |if ((k<0) & (ILOG < k)) ILOG = kk_pos: movel %d6,%d0 |calc ILOG + 1 - LEN in d0 addql #1,%d0 |add the 1 subl %d4,%d0 |sub off LEN swap %d5 |use upper word of d5 for LAMBDA clrw %d5 |set it zero initially clrw %d2 |set up d2 for very small case tstl %d0 |test sign of ISCALE bges iscale |if pos, skip next inst addqw #1,%d5 |if neg, set LAMBDA true cmpl #0xffffecd4,%d0 |test iscale <= -4908 bgts no_inf |if false, skip rest addil #24,%d0 |add in 24 to iscale movel #24,%d2 |put 24 in d2 for A9no_inf: negl %d0 |and take abs of ISCALEiscale: fmoves FONE,%fp1 |init fp1 to 1 bfextu USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits lslw #1,%d1 |put them in bits 2:1 addw %d5,%d1 |add in LAMBDA lslw #1,%d1 |put them in bits 3:1 tstl L_SCR2(%a6) |test sign of original x bges x_pos |if pos, don't set bit 0 addql #1,%d1 |if neg, set bit 0x_pos: leal RBDTBL,%a2 |load rbdtbl base moveb (%a2,%d1),%d3 |load d3 with new rmode lsll #4,%d3 |put bits in proper position fmovel %d3,%fpcr |load bits into fpu lsrl #4,%d3 |put bits in proper position tstb %d3 |decode new rmode for pten table bnes not_rn |if zero, it is RN leal PTENRN,%a1 |load a1 with RN table base bras rmode |exit decodenot_rn: lsrb #1,%d3 |get lsb in carry bccs not_rp |if carry clear, it is RM leal PTENRP,%a1 |load a1 with RP table base bras rmode |exit decodenot_rp: leal PTENRM,%a1 |load a1 with RM table basermode: clrl %d3 |clr table indexe_loop: lsrl #1,%d0 |shift next bit into carry bccs e_next |if zero, skip the mul fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)e_next: addl #12,%d3 |inc d3 to next pwrten table entry tstl %d0 |test if ISCALE is zero bnes e_loop |if not, loop| A8. Clr INEX; Force RZ.| The operation in A3 above may have set INEX2. | RZ mode is forced for the scaling operation to insure| only one rounding error. The grs bits are collected in | the INEX flag for use in A10.|| Register usage:| Input/Output fmovel #0,%FPSR |clr INEX fmovel #rz_mode,%FPCR |set RZ rounding mode| A9. Scale X -> Y.| The mantissa is scaled to the desired number of significant| digits. The excess digits are collected in INEX2. If mul,| Check d2 for excess 10 exponential value. If not zero, | the iscale value would have caused the pwrten calculation| to overflow. Only a negative iscale can cause this, so| multiply by 10^(d2), which is now only allowed to be 24,| with a multiply by 10^8 and 10^16, which is exact since| 10^24 is exact. If the input was denormalized, we must| create a busy stack frame with the mul command and the| two operands, and allow the fpu to complete the multiply.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -