⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bindec.s

📁 这个linux源代码是很全面的~基本完整了~使用c编译的~由于时间问题我没有亲自测试~但就算用来做参考资料也是非常好的
💻 S
📖 第 1 页 / 共 2 页
字号:
||	bindec.sa 3.4 1/3/91||	bindec||	Description:|		Converts an input in extended precision format|		to bcd format.||	Input:|		a0 points to the input extended precision value|		value in memory; d0 contains the k-factor sign-extended|		to 32-bits.  The input may be either normalized,|		unnormalized, or denormalized.||	Output:	result in the FP_SCR1 space on the stack.||	Saves and Modifies: D2-D7,A2,FP2||	Algorithm:||	A1.	Set RM and size ext;  Set SIGMA = sign of input.  |		The k-factor is saved for use in d7. Clear the|		BINDEC_FLG for separating normalized/denormalized|		input.  If input is unnormalized or denormalized,|		normalize it.||	A2.	Set X = abs(input).||	A3.	Compute ILOG.|		ILOG is the log base 10 of the input value.  It is|		approximated by adding e + 0.f when the original |		value is viewed as 2^^e * 1.f in extended precision.  |		This value is stored in d6.||	A4.	Clr INEX bit.|		The operation in A3 above may have set INEX2.  ||	A5.	Set ICTR = 0;|		ICTR is a flag used in A13.  It must be set before the |		loop entry A6.||	A6.	Calculate LEN.|		LEN is the number of digits to be displayed.  The|		k-factor can dictate either the total number of digits,|		if it is a positive number, or the number of digits|		after the decimal point which are to be included as|		significant.  See the 68882 manual for examples.|		If LEN is computed to be greater than 17, set OPERR in|		USER_FPSR.  LEN is stored in d4.||	A7.	Calculate SCALE.|		SCALE is equal to 10^ISCALE, where ISCALE is the number|		of decimal places needed to insure LEN integer digits|		in the output before conversion to bcd. LAMBDA is the|		sign of ISCALE, used in A9. Fp1 contains|		10^^(abs(ISCALE)) using a rounding mode which is a|		function of the original rounding mode and the signs|		of ISCALE and X.  A table is given in the code.||	A8.	Clr INEX; Force RZ.|		The operation in A3 above may have set INEX2.  |		RZ mode is forced for the scaling operation to insure|		only one rounding error.  The grs bits are collected in |		the INEX flag for use in A10.||	A9.	Scale X -> Y.|		The mantissa is scaled to the desired number of|		significant digits.  The excess digits are collected|		in INEX2.||	A10.	Or in INEX.|		If INEX is set, round error occurred.  This is|		compensated for by 'or-ing' in the INEX2 flag to|		the lsb of Y.||	A11.	Restore original FPCR; set size ext.|		Perform FINT operation in the user's rounding mode.|		Keep the size to extended.||	A12.	Calculate YINT = FINT(Y) according to user's rounding|		mode.  The FPSP routine sintd0 is used.  The output|		is in fp0.||	A13.	Check for LEN digits.|		If the int operation results in more than LEN digits,|		or less than LEN -1 digits, adjust ILOG and repeat from|		A6.  This test occurs only on the first pass.  If the|		result is exactly 10^LEN, decrement ILOG and divide|		the mantissa by 10.||	A14.	Convert the mantissa to bcd.|		The binstr routine is used to convert the LEN digit |		mantissa to bcd in memory.  The input to binstr is|		to be a fraction; i.e. (mantissa)/10^LEN and adjusted|		such that the decimal point is to the left of bit 63.|		The bcd digits are stored in the correct position in |		the final string area in memory.||	A15.	Convert the exponent to bcd.|		As in A14 above, the exp is converted to bcd and the|		digits are stored in the final string.|		Test the length of the final exponent string.  If the|		length is 4, set operr.||	A16.	Write sign bits to final string.||	Implementation Notes:||	The registers are used as follows:||		d0: scratch; LEN input to binstr|		d1: scratch|		d2: upper 32-bits of mantissa for binstr|		d3: scratch;lower 32-bits of mantissa for binstr|		d4: LEN|      		d5: LAMBDA/ICTR|		d6: ILOG|		d7: k-factor|		a0: ptr for original operand/final result|		a1: scratch pointer|		a2: pointer to FP_X; abs(original value) in ext|		fp0: scratch|		fp1: scratch|		fp2: scratch|		F_SCR1:|		F_SCR2:|		L_SCR1:|		L_SCR2:|		Copyright (C) Motorola, Inc. 1990|			All Rights Reserved||	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA |	The copyright notice above does not evidence any  |	actual or intended publication of such source code.|BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package	.include "fpsp.h"	|section	8| Constants in extended precisionLOG2: 	.long	0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000LOG2UP1:	.long	0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000| Constants in single precisionFONE: 	.long	0x3F800000,0x00000000,0x00000000,0x00000000FTWO:	.long	0x40000000,0x00000000,0x00000000,0x00000000FTEN: 	.long	0x41200000,0x00000000,0x00000000,0x00000000F4933:	.long	0x459A2800,0x00000000,0x00000000,0x00000000RBDTBL: 	.byte	0,0,0,0	.byte	3,3,2,2	.byte	3,2,2,3	.byte	2,3,3,2	|xref	binstr	|xref	sintdo	|xref	ptenrn,ptenrm,ptenrp	.global	bindec	.global	sc_mulbindec:	moveml	%d2-%d7/%a2,-(%a7)	fmovemx %fp0-%fp2,-(%a7)| A1. Set RM and size ext. Set SIGMA = sign input;|     The k-factor is saved for use in d7.  Clear BINDEC_FLG for|     separating  normalized/denormalized input.  If the input|     is a denormalized number, set the BINDEC_FLG memory word|     to signal denorm.  If the input is unnormalized, normalize|     the input and test for denormalized result.  |	fmovel	#rm_mode,%FPCR	|set RM and ext	movel	(%a0),L_SCR2(%a6)	|save exponent for sign check	movel	%d0,%d7		|move k-factor to d7	clrb	BINDEC_FLG(%a6)	|clr norm/denorm flag	movew	STAG(%a6),%d0	|get stag	andiw	#0xe000,%d0	|isolate stag bits	beq	A2_str		|if zero, input is norm|| Normalize the denorm|un_de_norm:	movew	(%a0),%d0	andiw	#0x7fff,%d0	|strip sign of normalized exp	movel	4(%a0),%d1	movel	8(%a0),%d2norm_loop:	subw	#1,%d0	lsll	#1,%d2	roxll	#1,%d1	tstl	%d1	bges	norm_loop|| Test if the normalized input is denormalized|	tstw	%d0	bgts	pos_exp		|if greater than zero, it is a norm	st	BINDEC_FLG(%a6)	|set flag for denormpos_exp:	andiw	#0x7fff,%d0	|strip sign of normalized exp	movew	%d0,(%a0)	movel	%d1,4(%a0)	movel	%d2,8(%a0)| A2. Set X = abs(input).|A2_str:	movel	(%a0),FP_SCR2(%a6) | move input to work space	movel	4(%a0),FP_SCR2+4(%a6) | move input to work space	movel	8(%a0),FP_SCR2+8(%a6) | move input to work space	andil	#0x7fffffff,FP_SCR2(%a6) |create abs(X)| A3. Compute ILOG.|     ILOG is the log base 10 of the input value.  It is approx-|     imated by adding e + 0.f when the original value is viewed|     as 2^^e * 1.f in extended precision.  This value is stored|     in d6.|| Register usage:|	Input/Output|	d0: k-factor/exponent|	d2: x/x|	d3: x/x|	d4: x/x|	d5: x/x|	d6: x/ILOG|	d7: k-factor/Unchanged|	a0: ptr for original operand/final result|	a1: x/x|	a2: x/x|	fp0: x/float(ILOG)|	fp1: x/x|	fp2: x/x|	F_SCR1:x/x|	F_SCR2:Abs(X)/Abs(X) with $3fff exponent|	L_SCR1:x/x|	L_SCR2:first word of X packed/Unchanged	tstb	BINDEC_FLG(%a6)	|check for denorm	beqs	A3_cont		|if clr, continue with norm	movel	#-4933,%d6	|force ILOG = -4933	bras	A4_strA3_cont:	movew	FP_SCR2(%a6),%d0	|move exp to d0	movew	#0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff	fmovex	FP_SCR2(%a6),%fp0	|now fp0 has 1.f	subw	#0x3fff,%d0	|strip off bias	faddw	%d0,%fp0		|add in exp	fsubs	FONE,%fp0	|subtract off 1.0	fbge	pos_res		|if pos, branch 	fmulx	LOG2UP1,%fp0	|if neg, mul by LOG2UP1	fmovel	%fp0,%d6		|put ILOG in d6 as a lword	bras	A4_str		|go move out ILOGpos_res:	fmulx	LOG2,%fp0	|if pos, mul by LOG2	fmovel	%fp0,%d6		|put ILOG in d6 as a lword| A4. Clr INEX bit.|     The operation in A3 above may have set INEX2.  A4_str:		fmovel	#0,%FPSR		|zero all of fpsr - nothing needed| A5. Set ICTR = 0;|     ICTR is a flag used in A13.  It must be set before the |     loop entry A6. The lower word of d5 is used for ICTR.	clrw	%d5		|clear ICTR| A6. Calculate LEN.|     LEN is the number of digits to be displayed.  The k-factor|     can dictate either the total number of digits, if it is|     a positive number, or the number of digits after the|     original decimal point which are to be included as|     significant.  See the 68882 manual for examples.|     If LEN is computed to be greater than 17, set OPERR in|     USER_FPSR.  LEN is stored in d4.|| Register usage:|	Input/Output|	d0: exponent/Unchanged|	d2: x/x/scratch|	d3: x/x|	d4: exc picture/LEN|	d5: ICTR/Unchanged|	d6: ILOG/Unchanged|	d7: k-factor/Unchanged|	a0: ptr for original operand/final result|	a1: x/x|	a2: x/x|	fp0: float(ILOG)/Unchanged|	fp1: x/x|	fp2: x/x|	F_SCR1:x/x|	F_SCR2:Abs(X) with $3fff exponent/Unchanged|	L_SCR1:x/x|	L_SCR2:first word of X packed/UnchangedA6_str:		tstl	%d7		|branch on sign of k	bles	k_neg		|if k <= 0, LEN = ILOG + 1 - k	movel	%d7,%d4		|if k > 0, LEN = k	bras	len_ck		|skip to LEN checkk_neg:	movel	%d6,%d4		|first load ILOG to d4	subl	%d7,%d4		|subtract off k	addql	#1,%d4		|add in the 1len_ck:	tstl	%d4		|LEN check: branch on sign of LEN	bles	LEN_ng		|if neg, set LEN = 1	cmpl	#17,%d4		|test if LEN > 17	bles	A7_str		|if not, forget it	movel	#17,%d4		|set max LEN = 17	tstl	%d7		|if negative, never set OPERR	bles	A7_str		|if positive, continue	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR	bras	A7_str		|finished hereLEN_ng:	moveql	#1,%d4		|min LEN is 1| A7. Calculate SCALE.|     SCALE is equal to 10^ISCALE, where ISCALE is the number|     of decimal places needed to insure LEN integer digits|     in the output before conversion to bcd. LAMBDA is the sign|     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using|     the rounding mode as given in the following table (see|     Coonen, p. 7.23 as ref.; however, the SCALE variable is|     of opposite sign in bindec.sa from Coonen).||	Initial					USE|	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5]|	----------------------------------------------|	 RN	00	   0	   0		00/0	RN|	 RN	00	   0	   1		00/0	RN|	 RN	00	   1	   0		00/0	RN|	 RN	00	   1	   1		00/0	RN|	 RZ	01	   0	   0		11/3	RP|	 RZ	01	   0	   1		11/3	RP|	 RZ	01	   1	   0		10/2	RM|	 RZ	01	   1	   1		10/2	RM|	 RM	10	   0	   0		11/3	RP|	 RM	10	   0	   1		10/2	RM|	 RM	10	   1	   0		10/2	RM|	 RM	10	   1	   1		11/3	RP|	 RP	11	   0	   0		10/2	RM|	 RP	11	   0	   1		11/3	RP|	 RP	11	   1	   0		11/3	RP|	 RP	11	   1	   1		10/2	RM|| Register usage:|	Input/Output|	d0: exponent/scratch - final is 0|	d2: x/0 or 24 for A9|	d3: x/scratch - offset ptr into PTENRM array|	d4: LEN/Unchanged|	d5: 0/ICTR:LAMBDA|	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))|	d7: k-factor/Unchanged|	a0: ptr for original operand/final result|	a1: x/ptr to PTENRM array|	a2: x/x|	fp0: float(ILOG)/Unchanged|	fp1: x/10^ISCALE|	fp2: x/x|	F_SCR1:x/x|	F_SCR2:Abs(X) with $3fff exponent/Unchanged|	L_SCR1:x/x|	L_SCR2:first word of X packed/UnchangedA7_str:		tstl	%d7		|test sign of k	bgts	k_pos		|if pos and > 0, skip this	cmpl	%d6,%d7		|test k - ILOG	blts	k_pos		|if ILOG >= k, skip this	movel	%d7,%d6		|if ((k<0) & (ILOG < k)) ILOG = kk_pos:		movel	%d6,%d0		|calc ILOG + 1 - LEN in d0	addql	#1,%d0		|add the 1	subl	%d4,%d0		|sub off LEN	swap	%d5		|use upper word of d5 for LAMBDA	clrw	%d5		|set it zero initially	clrw	%d2		|set up d2 for very small case	tstl	%d0		|test sign of ISCALE	bges	iscale		|if pos, skip next inst	addqw	#1,%d5		|if neg, set LAMBDA true	cmpl	#0xffffecd4,%d0	|test iscale <= -4908	bgts	no_inf		|if false, skip rest	addil	#24,%d0		|add in 24 to iscale	movel	#24,%d2		|put 24 in d2 for A9no_inf:		negl	%d0		|and take abs of ISCALEiscale:		fmoves	FONE,%fp1	|init fp1 to 1	bfextu	USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits	lslw	#1,%d1		|put them in bits 2:1	addw	%d5,%d1		|add in LAMBDA	lslw	#1,%d1		|put them in bits 3:1	tstl	L_SCR2(%a6)	|test sign of original x	bges	x_pos		|if pos, don't set bit 0	addql	#1,%d1		|if neg, set bit 0x_pos:	leal	RBDTBL,%a2	|load rbdtbl base	moveb	(%a2,%d1),%d3	|load d3 with new rmode	lsll	#4,%d3		|put bits in proper position	fmovel	%d3,%fpcr		|load bits into fpu	lsrl	#4,%d3		|put bits in proper position	tstb	%d3		|decode new rmode for pten table	bnes	not_rn		|if zero, it is RN	leal	PTENRN,%a1	|load a1 with RN table base	bras	rmode		|exit decodenot_rn:	lsrb	#1,%d3		|get lsb in carry	bccs	not_rp		|if carry clear, it is RM	leal	PTENRP,%a1	|load a1 with RP table base	bras	rmode		|exit decodenot_rp:	leal	PTENRM,%a1	|load a1 with RM table basermode:	clrl	%d3		|clr table indexe_loop:		lsrl	#1,%d0		|shift next bit into carry	bccs	e_next		|if zero, skip the mul	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)e_next:		addl	#12,%d3		|inc d3 to next pwrten table entry	tstl	%d0		|test if ISCALE is zero	bnes	e_loop		|if not, loop| A8. Clr INEX; Force RZ.|     The operation in A3 above may have set INEX2.  |     RZ mode is forced for the scaling operation to insure|     only one rounding error.  The grs bits are collected in |     the INEX flag for use in A10.|| Register usage:|	Input/Output	fmovel	#0,%FPSR		|clr INEX 	fmovel	#rz_mode,%FPCR	|set RZ rounding mode| A9. Scale X -> Y.|     The mantissa is scaled to the desired number of significant|     digits.  The excess digits are collected in INEX2. If mul,|     Check d2 for excess 10 exponential value.  If not zero, |     the iscale value would have caused the pwrten calculation|     to overflow.  Only a negative iscale can cause this, so|     multiply by 10^(d2), which is now only allowed to be 24,|     with a multiply by 10^8 and 10^16, which is exact since|     10^24 is exact.  If the input was denormalized, we must|     create a busy stack frame with the mul command and the|     two operands, and allow the fpu to complete the multiply.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -