⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 setup.c

📁 这个linux源代码是很全面的~基本完整了~使用c编译的~由于时间问题我没有亲自测试~但就算用来做参考资料也是非常好的
💻 C
📖 第 1 页 / 共 2 页
字号:
		ia64_set_kr(IA64_KR_IO_BASE, phys_iobase);	else {		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);		printk("No I/O port range found in EFI memory map, falling back to AR.KR0\n");		printk("I/O port base = 0x%lx\n", phys_iobase);	}	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);#ifdef CONFIG_SMP	cpu_physical_id(0) = hard_smp_processor_id();#endif	cpu_init();	/* initialize the bootstrap CPU */#ifdef CONFIG_ACPI_BOOT	acpi_boot_init(*cmdline_p);#endif#ifdef CONFIG_SERIAL_HCDP	if (efi.hcdp) {		void setup_serial_hcdp(void *);		/* Setup the serial ports described by HCDP */		setup_serial_hcdp(efi.hcdp);	}#endif#ifdef CONFIG_VT# if defined(CONFIG_DUMMY_CONSOLE)	conswitchp = &dummy_con;# endif# if defined(CONFIG_VGA_CONSOLE)	/*	 * Non-legacy systems may route legacy VGA MMIO range to system	 * memory.  vga_con probes the MMIO hole, so memory looks like	 * a VGA device to it.  The EFI memory map can tell us if it's	 * memory so we can avoid this problem.	 */	if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)		conswitchp = &vga_con;# endif#endif#ifdef CONFIG_IA64_MCA	/* enable IA-64 Machine Check Abort Handling */	ia64_mca_init();#endif	platform_setup(cmdline_p);	paging_init();	unw_create_gate_table();}/* * Display cpu info for all cpu's. */static intshow_cpuinfo (struct seq_file *m, void *v){#ifdef CONFIG_SMP#	define lpj	c->loops_per_jiffy#	define cpu	c->processor#else#	define lpj	loops_per_jiffy#	define cpu	0#endif	char family[32], features[128], *cp;	struct cpuinfo_ia64 *c = v;	unsigned long mask;	mask = c->features;	switch (c->family) {	      case 0x07:	memcpy(family, "Itanium", 8); break;	      case 0x1f:	memcpy(family, "Itanium 2", 10); break;	      default:		sprintf(family, "%u", c->family); break;	}	/* build the feature string: */	memcpy(features, " standard", 10);	cp = features;	if (mask & 1) {		strcpy(cp, " branchlong");		cp = strchr(cp, '\0');		mask &= ~1UL;	}	if (mask)		sprintf(cp, " 0x%lx", mask);	seq_printf(m,		   "processor  : %d\n"		   "vendor     : %s\n"		   "arch       : IA-64\n"		   "family     : %s\n"		   "model      : %u\n"		   "revision   : %u\n"		   "archrev    : %u\n"		   "features   :%s\n"	/* don't change this---it _is_ right! */		   "cpu number : %lu\n"		   "cpu regs   : %u\n"		   "cpu MHz    : %lu.%06lu\n"		   "itc MHz    : %lu.%06lu\n"		   "BogoMIPS   : %lu.%02lu\n\n",		   cpu, c->vendor, family, c->model, c->revision, c->archrev,		   features, c->ppn, c->number,		   c->proc_freq / 1000000, c->proc_freq % 1000000,		   c->itc_freq / 1000000, c->itc_freq % 1000000,		   lpj*HZ/500000, (lpj*HZ/5000) % 100);	return 0;}static void *c_start (struct seq_file *m, loff_t *pos){#ifdef CONFIG_SMP	while (*pos < NR_CPUS && !(cpu_online_map & (1UL << *pos)))		++*pos;#endif	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;}static void *c_next (struct seq_file *m, void *v, loff_t *pos){	++*pos;	return c_start(m, pos);}static voidc_stop (struct seq_file *m, void *v){}struct seq_operations cpuinfo_op = {	start:	c_start,	next:	c_next,	stop:	c_stop,	show:	show_cpuinfo};voididentify_cpu (struct cpuinfo_ia64 *c){	union {		unsigned long bits[5];		struct {			/* id 0 & 1: */			char vendor[16];			/* id 2 */			u64 ppn;		/* processor serial number */			/* id 3: */			unsigned number		:  8;			unsigned revision	:  8;			unsigned model		:  8;			unsigned family		:  8;			unsigned archrev	:  8;			unsigned reserved	: 24;			/* id 4: */			u64 features;		} field;	} cpuid;	pal_vm_info_1_u_t vm1;	pal_vm_info_2_u_t vm2;	pal_status_t status;	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */	int i;	for (i = 0; i < 5; ++i)		cpuid.bits[i] = ia64_get_cpuid(i);	memcpy(c->vendor, cpuid.field.vendor, 16);#ifdef CONFIG_SMP	c->processor = smp_processor_id();#endif	c->ppn = cpuid.field.ppn;	c->number = cpuid.field.number;	c->revision = cpuid.field.revision;	c->model = cpuid.field.model;	c->family = cpuid.field.family;	c->archrev = cpuid.field.archrev;	c->features = cpuid.field.features;	status = ia64_pal_vm_summary(&vm1, &vm2);	if (status == PAL_STATUS_SUCCESS) {		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;	}	printk("CPU %d: %lu virtual and %lu physical address bits\n",	       smp_processor_id(), impl_va_msb + 1, phys_addr_size);	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));}/* * cpu_init() initializes state that is per-CPU.  This function acts * as a 'CPU state barrier', nothing should get across. */voidcpu_init (void){	extern void __init ia64_mmu_init (void *);	unsigned long num_phys_stacked;	pal_vm_info_2_u_t vmi;	unsigned int max_ctx;	struct cpuinfo_ia64 *my_cpu_data;#ifdef CONFIG_NUMA	int cpu, order;	/*	 * If NUMA is configured, the cpu_data array is not preallocated. The boot cpu	 * allocates entries for every possible cpu. As the remaining cpus come online,	 * they reallocate a new cpu_data structure on their local node. This extra work	 * is required because some boot code references all cpu_data structures	 * before the cpus are actually started.	 */	if (!boot_cpu_data) {		my_cpu_data = alloc_bootmem_pages_node(NODE_DATA(numa_node_id()),						       sizeof(struct cpuinfo_ia64));		boot_cpu_data = my_cpu_data;		my_cpu_data->cpu_data[0] = my_cpu_data;		for (cpu = 1; cpu < NR_CPUS; ++cpu)			my_cpu_data->cpu_data[cpu]				= alloc_bootmem_pages_node(NODE_DATA(numa_node_id()),							   sizeof(struct cpuinfo_ia64));		for (cpu = 1; cpu < NR_CPUS; ++cpu)			memcpy(my_cpu_data->cpu_data[cpu]->cpu_data,			       my_cpu_data->cpu_data, sizeof(my_cpu_data->cpu_data));	} else {		order = get_order(sizeof(struct cpuinfo_ia64));		my_cpu_data = page_address(alloc_pages_node(numa_node_id(), GFP_KERNEL, order));		memcpy(my_cpu_data, boot_cpu_data->cpu_data[smp_processor_id()],		       sizeof(struct cpuinfo_ia64));		__free_pages(virt_to_page(boot_cpu_data->cpu_data[smp_processor_id()]),			     order);		for (cpu = 0; cpu < NR_CPUS; ++cpu)			boot_cpu_data->cpu_data[cpu]->cpu_data[smp_processor_id()] = my_cpu_data;	}#else	my_cpu_data = cpu_data(smp_processor_id());#endif	/*	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it	 * depends on the data returned by identify_cpu().  We break the dependency by	 * accessing cpu_data() the old way, through identity mapped space.	 */	identify_cpu(my_cpu_data);#ifdef CONFIG_MCKINLEY	{#define FEATURE_SET 16		struct ia64_pal_retval iprv;		if (my_cpu_data->family == 0x1f) {			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80)) {				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,				              (iprv.v1 | 0x80), FEATURE_SET, 0);			}		}	}#endif	/* Clear the stack memory reserved for pt_regs: */	memset(ia64_task_regs(current), 0, sizeof(struct pt_regs));	/*	 * Initialize default control register to defer all speculative faults.  The	 * kernel MUST NOT depend on a particular setting of these bits (in other words,	 * the kernel must have recovery code for all speculative accesses).  Turn on	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll	 * be fine).	 */	ia64_set_dcr(  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR		     | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC);#ifndef CONFIG_SMP	ia64_set_fpu_owner(0);#endif	atomic_inc(&init_mm.mm_count);	current->active_mm = &init_mm;	ia64_mmu_init(my_cpu_data);#ifdef CONFIG_IA32_SUPPORT	/* initialize global ia32 state - CR0 and CR4 */	asm volatile ("mov ar.cflg = %0" :: "r" (((ulong) IA32_CR4 << 32) | IA32_CR0));#endif	/* disable all local interrupt sources: */	ia64_set_itv(1 << 16);	ia64_set_lrr0(1 << 16);	ia64_set_lrr1(1 << 16);	ia64_set_pmv(1 << 16);	ia64_set_cmcv(1 << 16);	/* clear TPR & XTP to enable all interrupt classes: */	ia64_set_tpr(0);#ifdef CONFIG_SMP	normal_xtp();#endif	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */	if (ia64_pal_vm_summary(NULL, &vmi) == 0)		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;	else {		printk("cpu_init: PAL VM summary failed, assuming 18 RID bits\n");		max_ctx = (1U << 15) - 1;	/* use architected minimum */	}	while (max_ctx < ia64_ctx.max_ctx) {		unsigned int old = ia64_ctx.max_ctx;		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)			break;	}	if (ia64_pal_rse_info(&num_phys_stacked, 0) != 0) {		printk ("cpu_init: PAL RSE info failed, assuming 96 physical stacked regs\n");		num_phys_stacked = 96;	}	local_cpu_data->phys_stacked_size_p8 = num_phys_stacked*8 + 8;	platform_cpu_init();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -