📄 misc.c
字号:
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
src/fs/misc.c
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26600 /* This file contains a collection of miscellaneous procedures. Some of them
26601 * perform simple system calls. Some others do a little part of system calls
26602 * that are mostly performed by the Memory Manager.
26603 *
26604 * The entry points into this file are
26605 * do_dup: perform the DUP system call
26606 * do_fcntl: perform the FCNTL system call
26607 * do_sync: perform the SYNC system call
26608 * do_fork: adjust the tables after MM has performed a FORK system call
26609 * do_exec: handle files with FD_CLOEXEC on after MM has done an EXEC
26610 * do_exit: a process has exited; note that in the tables
26611 * do_set: set uid or gid for some process
26612 * do_revive: revive a process that was waiting for something (e.g. TTY)
26613 */
26614
26615 #include "fs.h"
26616 #include <fcntl.h>
26617 #include <unistd.h> /* cc runs out of memory with unistd.h :-( */
26618 #include <minix/callnr.h>
26619 #include <minix/com.h>
26620 #include <minix/boot.h>
26621 #include "buf.h"
26622 #include "file.h"
26623 #include "fproc.h"
26624 #include "inode.h"
26625 #include "dev.h"
26626 #include "param.h"
26627
26628
26629 /*===========================================================================*
26630 * do_dup *
26631 *===========================================================================*/
26632 PUBLIC int do_dup()
26633 {
26634 /* Perform the dup(fd) or dup2(fd,fd2) system call. These system calls are
26635 * obsolete. In fact, it is not even possible to invoke them using the
26636 * current library because the library routines call fcntl(). They are
26637 * provided to permit old binary programs to continue to run.
26638 */
26639
26640 register int rfd;
26641 register struct filp *f;
26642 struct filp *dummy;
26643 int r;
26644
26645 /* Is the file descriptor valid? */
26646 rfd = fd & ~DUP_MASK; /* kill off dup2 bit, if on */
26647 if ((f = get_filp(rfd)) == NIL_FILP) return(err_code);
26648
26649 /* Distinguish between dup and dup2. */
26650 if (fd == rfd) { /* bit not on */
26651 /* dup(fd) */
26652 if ( (r = get_fd(0, 0, &fd2, &dummy)) != OK) return(r);
26653 } else {
26654 /* dup2(fd, fd2) */
26655 if (fd2 < 0 || fd2 >= OPEN_MAX) return(EBADF);
26656 if (rfd == fd2) return(fd2); /* ignore the call: dup2(x, x) */
26657 fd = fd2; /* prepare to close fd2 */
26658 (void) do_close(); /* cannot fail */
26659 }
26660
26661 /* Success. Set up new file descriptors. */
26662 f->filp_count++;
26663 fp->fp_filp[fd2] = f;
26664 return(fd2);
26665 }
26667 /*===========================================================================*
26668 * do_fcntl *
26669 *===========================================================================*/
26670 PUBLIC int do_fcntl()
26671 {
26672 /* Perform the fcntl(fd, request, ...) system call. */
26673
26674 register struct filp *f;
26675 int new_fd, r, fl;
26676 long cloexec_mask; /* bit map for the FD_CLOEXEC flag */
26677 long clo_value; /* FD_CLOEXEC flag in proper position */
26678 struct filp *dummy;
26679
26680 /* Is the file descriptor valid? */
26681 if ((f = get_filp(fd)) == NIL_FILP) return(err_code);
26682
26683 switch (request) {
26684 case F_DUPFD:
26685 /* This replaces the old dup() system call. */
26686 if (addr < 0 || addr >= OPEN_MAX) return(EINVAL);
26687 if ((r = get_fd(addr, 0, &new_fd, &dummy)) != OK) return(r);
26688 f->filp_count++;
26689 fp->fp_filp[new_fd] = f;
26690 return(new_fd);
26691
26692 case F_GETFD:
26693 /* Get close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */
26694 return( ((fp->fp_cloexec >> fd) & 01) ? FD_CLOEXEC : 0);
26695
26696 case F_SETFD:
26697 /* Set close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */
26698 cloexec_mask = 1L << fd; /* singleton set position ok */
26699 clo_value = (addr & FD_CLOEXEC ? cloexec_mask : 0L);
26700 fp->fp_cloexec = (fp->fp_cloexec & ~cloexec_mask) | clo_value;
26701 return(OK);
26702
26703 case F_GETFL:
26704 /* Get file status flags (O_NONBLOCK and O_APPEND). */
26705 fl = f->filp_flags & (O_NONBLOCK | O_APPEND | O_ACCMODE);
26706 return(fl);
26707
26708 case F_SETFL:
26709 /* Set file status flags (O_NONBLOCK and O_APPEND). */
26710 fl = O_NONBLOCK | O_APPEND;
26711 f->filp_flags = (f->filp_flags & ~fl) | (addr & fl);
26712 return(OK);
26713
26714 case F_GETLK:
26715 case F_SETLK:
26716 case F_SETLKW:
26717 /* Set or clear a file lock. */
26718 r = lock_op(f, request);
26719 return(r);
26720
26721 default:
26722 return(EINVAL);
26723 }
26724 }
26727 /*===========================================================================*
26728 * do_sync *
26729 *===========================================================================*/
26730 PUBLIC int do_sync()
26731 {
26732 /* Perform the sync() system call. Flush all the tables. */
26733
26734 register struct inode *rip;
26735 register struct buf *bp;
26736
26737 /* The order in which the various tables are flushed is critical. The
26738 * blocks must be flushed last, since rw_inode() leaves its results in
26739 * the block cache.
26740 */
26741
26742 /* Write all the dirty inodes to the disk. */
26743 for (rip = &inode[0]; rip < &inode[NR_INODES]; rip++)
26744 if (rip->i_count > 0 && rip->i_dirt == DIRTY) rw_inode(rip, WRITING);
26745
26746 /* Write all the dirty blocks to the disk, one drive at a time. */
26747 for (bp = &buf[0]; bp < &buf[NR_BUFS]; bp++)
26748 if (bp->b_dev != NO_DEV && bp->b_dirt == DIRTY) flushall(bp->b_dev);
26749
26750 return(OK); /* sync() can't fail */
26751 }
26754 /*===========================================================================*
26755 * do_fork *
26756 *===========================================================================*/
26757 PUBLIC int do_fork()
26758 {
26759 /* Perform those aspects of the fork() system call that relate to files.
26760 * In particular, let the child inherit its parent's file descriptors.
26761 * The parent and child parameters tell who forked off whom. The file
26762 * system uses the same slot numbers as the kernel. Only MM makes this call.
26763 */
26764
26765 register struct fproc *cp;
26766 int i;
26767
26768 /* Only MM may make this call directly. */
26769 if (who != MM_PROC_NR) return(EGENERIC);
26770
26771 /* Copy the parent's fproc struct to the child. */
26772 fproc[child] = fproc[parent];
26773
26774 /* Increase the counters in the 'filp' table. */
26775 cp = &fproc[child];
26776 for (i = 0; i < OPEN_MAX; i++)
26777 if (cp->fp_filp[i] != NIL_FILP) cp->fp_filp[i]->filp_count++;
26778
26779 /* Fill in new process id. */
26780 cp->fp_pid = pid;
26781
26782 /* A child is not a process leader. */
26783 cp->fp_sesldr = 0;
26784
26785 /* Record the fact that both root and working dir have another user. */
26786 dup_inode(cp->fp_rootdir);
26787 dup_inode(cp->fp_workdir);
26788 return(OK);
26789 }
26792 /*===========================================================================*
26793 * do_exec *
26794 *===========================================================================*/
26795 PUBLIC int do_exec()
26796 {
26797 /* Files can be marked with the FD_CLOEXEC bit (in fp->fp_cloexec). When
26798 * MM does an EXEC, it calls FS to allow FS to find these files and close them.
26799 */
26800
26801 register int i;
26802 long bitmap;
26803
26804 /* Only MM may make this call directly. */
26805 if (who != MM_PROC_NR) return(EGENERIC);
26806
26807 /* The array of FD_CLOEXEC bits is in the fp_cloexec bit map. */
26808 fp = &fproc[slot1]; /* get_filp() needs 'fp' */
26809 bitmap = fp->fp_cloexec;
26810 if (bitmap == 0) return(OK); /* normal case, no FD_CLOEXECs */
26811
26812 /* Check the file desriptors one by one for presence of FD_CLOEXEC. */
26813 for (i = 0; i < OPEN_MAX; i++) {
26814 fd = i;
26815 if ( (bitmap >> i) & 01) (void) do_close();
26816 }
26817
26818 return(OK);
26819 }
26822 /*===========================================================================*
26823 * do_exit *
26824 *===========================================================================*/
26825 PUBLIC int do_exit()
26826 {
26827 /* Perform the file system portion of the exit(status) system call. */
26828
26829 register int i, exitee, task;
26830 register struct fproc *rfp;
26831 register struct filp *rfilp;
26832 register struct inode *rip;
26833 int major;
26834 dev_t dev;
26835 message dev_mess;
26836
26837 /* Only MM may do the EXIT call directly. */
26838 if (who != MM_PROC_NR) return(EGENERIC);
26839
26840 /* Nevertheless, pretend that the call came from the user. */
26841 fp = &fproc[slot1]; /* get_filp() needs 'fp' */
26842 exitee = slot1;
26843
26844 if (fp->fp_suspended == SUSPENDED) {
26845 task = -fp->fp_task;
26846 if (task == XPIPE || task == XPOPEN) susp_count--;
26847 pro = exitee;
26848 (void) do_unpause(); /* this always succeeds for MM */
26849 fp->fp_suspended = NOT_SUSPENDED;
26850 }
26851
26852 /* Loop on file descriptors, closing any that are open. */
26853 for (i = 0; i < OPEN_MAX; i++) {
26854 fd = i;
26855 (void) do_close();
26856 }
26857
26858 /* Release root and working directories. */
26859 put_inode(fp->fp_rootdir);
26860 put_inode(fp->fp_workdir);
26861 fp->fp_rootdir = NIL_INODE;
26862 fp->fp_workdir = NIL_INODE;
26863
26864 /* If a session leader exits then revoke access to its controlling tty from
26865 * all other processes using it.
26866 */
26867 if (!fp->fp_sesldr) return(OK); /* not a session leader */
26868 fp->fp_sesldr = FALSE;
26869 if (fp->fp_tty == 0) return(OK); /* no controlling tty */
26870 dev = fp->fp_tty;
26871
26872 for (rfp = &fproc[LOW_USER]; rfp < &fproc[NR_PROCS]; rfp++) {
26873 if (rfp->fp_tty == dev) rfp->fp_tty = 0;
26874
26875 for (i = 0; i < OPEN_MAX; i++) {
26876 if ((rfilp = rfp->fp_filp[i]) == NIL_FILP) continue;
26877 if (rfilp->filp_mode == FILP_CLOSED) continue;
26878 rip = rfilp->filp_ino;
26879 if ((rip->i_mode & I_TYPE) != I_CHAR_SPECIAL) continue;
26880 if ((dev_t) rip->i_zone[0] != dev) continue;
26881 dev_mess.m_type = DEV_CLOSE;
26882 dev_mess.DEVICE = dev;
26883 major = (dev >> MAJOR) & BYTE; /* major device nr */
26884 task = dmap[major].dmap_task; /* device task nr */
26885 (*dmap[major].dmap_close)(task, &dev_mess);
26886 rfilp->filp_mode = FILP_CLOSED;
26887 }
26888 }
26889 return(OK);
26890 }
26893 /*===========================================================================*
26894 * do_set *
26895 *===========================================================================*/
26896 PUBLIC int do_set()
26897 {
26898 /* Set uid_t or gid_t field. */
26899
26900 register struct fproc *tfp;
26901
26902 /* Only MM may make this call directly. */
26903 if (who != MM_PROC_NR) return(EGENERIC);
26904
26905 tfp = &fproc[slot1];
26906 if (fs_call == SETUID) {
26907 tfp->fp_realuid = (uid_t) real_user_id;
26908 tfp->fp_effuid = (uid_t) eff_user_id;
26909 }
26910 if (fs_call == SETGID) {
26911 tfp->fp_effgid = (gid_t) eff_grp_id;
26912 tfp->fp_realgid = (gid_t) real_grp_id;
26913 }
26914 return(OK);
26915 }
26918 /*===========================================================================*
26919 * do_revive *
26920 *===========================================================================*/
26921 PUBLIC int do_revive()
26922 {
26923 /* A task, typically TTY, has now gotten the characters that were needed for a
26924 * previous read. The process did not get a reply when it made the call.
26925 * Instead it was suspended. Now we can send the reply to wake it up. This
26926 * business has to be done carefully, since the incoming message is from
26927 * a task (to which no reply can be sent), and the reply must go to a process
26928 * that blocked earlier. The reply to the caller is inhibited by setting the
26929 * 'dont_reply' flag, and the reply to the blocked process is done explicitly
26930 * in revive().
26931 */
26932
26933 #if !ALLOW_USER_SEND
26934 if (who >= LOW_USER) return(EPERM);
26935 #endif
26936
26937 revive(m.REP_PROC_NR, m.REP_STATUS);
26938 dont_reply = TRUE; /* don't reply to the TTY task */
26939 return(OK);
26940 }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -