📄 nphard.html
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD W3 HTML 2.0//EN">
<HTML lang="en-US">
<HEAD>
<TITLE>NP-hard</TITLE>
<META name="description"
content="Definition of NP-hard,
possibly with links to more information and implementations.">
<META name="keywords" content="NP-hard">
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<H1>NP-hard</H1>
<P>
(definition)
<P>
<strong>Definition:</strong>
A <a href="complexitycl.html" tppabs="http://hissa.nist.gov/dads/HTML/complexitycl.html"><em>complexity class</em></a> of problems that are intrinsically harder than those that can be solved by a <a href="turingmachin.html" tppabs="http://hissa.nist.gov/dads/HTML/turingmachin.html"><em>Turing machine</em></a> in <a href="nondetrmnstc.html" tppabs="http://hissa.nist.gov/dads/HTML/nondetrmnstc.html"><em>nondeterministic</em></a> <a href="polynomialtm.html" tppabs="http://hissa.nist.gov/dads/HTML/polynomialtm.html"><em>polynomial time</em></a>. When a decision version of a combinatorial <a href="optimization.html" tppabs="http://hissa.nist.gov/dads/HTML/optimization.html"><em>optimization problem</em></a> is proven to belong to the class of <a href="npcomplete.html" tppabs="http://hissa.nist.gov/dads/HTML/npcomplete.html"><em>NP-complete</em></a> problems, which includes well-known problems such as satisfiability, <a href="travelsales.html" tppabs="http://hissa.nist.gov/dads/HTML/travelsales.html"><em>traveling salesman</em></a>, etc., an optimization version is <a href="nphard.html" tppabs="http://hissa.nist.gov/dads/HTML/nphard.html"><em>NP-hard</em></a>.
<P><strong>See also</strong>
<a href="stronglyNP.html" tppabs="http://hissa.nist.gov/dads/HTML/stronglyNP.html"><em>strongly NP-hard</em></a>, <a href="ap.html" tppabs="http://hissa.nist.gov/dads/HTML/ap.html"><em>AP</em></a>.
<P><em>Note:
For example, to decide if there exist k <a href="starshaped.html" tppabs="http://hissa.nist.gov/dads/HTML/starshaped.html"><em>star-shaped polygons</em></a> whose union is equal to a given simple polygon, for some parameter k, is NP-complete. The optimization problem, i.e., finding a minimum of star-shaped polygons whose union is equal to a given simple polygon, is NP-hard. <P> From Algorithms and Theory of Computation Handbook, page 19-26, Copyright © 1999 by CRC Press LLC.</em>
<P>Author: <a href="terms.html#authorCRC-A" tppabs="http://hissa.nist.gov/dads/terms.html#authorCRC-A">CRC-A</a>
<H2>More information</H2>
History, definitions, examples, etc. given in <A HREF="javascript:if(confirm('http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.cs.unb.ca/%7Ealopez-o/comp-faq/faq.html \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.cs.unb.ca/%7Ealopez-o/comp-faq/faq.html'" tppabs="http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.cs.unb.ca/%7Ealopez-o/comp-faq/faq.html">Comp.Theory FAQ</A>, scroll down to <strong>P vs. NP</strong>.
<hr>
Go to the
<A HREF="terms.html" tppabs="http://hissa.nist.gov/dads/terms.html">Algorithms, Data Structures, and Problems</A>
home page.
<hr>
If you have suggestions, corrections, or comments, please get in touch
with
<a href="javascript:if(confirm('http://hissa.nist.gov/~black/black.html \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://hissa.nist.gov/~black/black.html'" tppabs="http://hissa.nist.gov/~black/black.html">Paul E. Black</a>
(<a href="mailto:paul.black@nist.gov">paul.black@nist.gov</a>).
<p>
Entry modified Thu Oct 7 12:25:48 1999.<BR>
HTML page formatted Wed Dec 22 09:35:58 1999.
<P>
This page's URL is
<A href="nphard.html" tppabs="http://hissa.nist.gov/dads/HTML/nphard.html">http://hissa.nist.gov/dads/HTML/nphard.html</A>
</BODY>
</HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -