⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 第四章 神经模糊控制.htm

📁 企业数字神经网络功能开发文章
💻 HTM
📖 第 1 页 / 共 4 页
字号:
      </P>
      <P>设V<SUB>1</SUB>=0.7,V<SUB>2</SUB>=0.3,r<SUB>1</SUB>=1,r<SUB>2</SUB>=0.5,<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">θ</SPAN>=0.则根据式(4.18)有:</P>
      <P><IMG height=136 src="第四章 神经模糊控制.files/7.htm58.gif" width=310 
      border=0></P>
      <P>故而有</P>
      <P><IMG height=46 src="第四章 神经模糊控制.files/7.htm59.gif" width=128 
      border=0></P>
      <P><IMG height=47 src="第四章 神经模糊控制.files/7.htm60.gif" width=128 
      border=0></P>
      <P>设V<SUB>1</SUB>=0.7,V<SUB>2</SUB>=0.3,r<SUB>1</SUB>=0.6,r<SUB>2</SUB>=0.5,<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">θ</SPAN>=0.则根据式(4.18)有:</P>
      <P><IMG height=137 src="第四章 神经模糊控制.files/7.htm61.gif" width=327 
      border=0></P>
      <P>故而有</P>
      <P><IMG height=44 src="第四章 神经模糊控制.files/7.htm62.gif" width=123 
      border=0></P>
      <P><IMG height=49 src="第四章 神经模糊控制.files/7.htm63.gif" width=128 
      border=0></P>
      <P>很明显,式(4.28)的意义是恰当的。</P>
      <P>同样,对于<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN><SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">θ</SPAN><SUB>i</SUB>,可计算如下:</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="75%"><IMG height=52 src="第四章 神经模糊控制.files/7.htm64.gif" 
            width=224 border=0></TD>
          <TD width="25%">(4.29)</TD></TR>
        <TR>
          <TD width="75%"><IMG height=56 src="第四章 神经模糊控制.files/7.htm65.gif" 
            width=202 border=0></TD>
          <TD width="25%">(4.30)</TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%" height=828>
      <P>为了保证r<SUB>ji</SUB>(l+1)和<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">θ</SPAN><SUB>i</SUB>(l+1)的值能处于[0,1]区间,故而给出附加的约束条件如下: 
      </P>
      <P>1.在式(4.23)中,如果式子右边得到的数值小于0,则令r<SUB>ji</SUB>(l+1)=0;如果式子右边得到的数值大于1,则令r<SUB>ji</SUB>(l+1)=1。</P>
      <P>2.在式(4.24)中,如果式子右边得到的数值小于0,则令<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">θ</SPAN><SUB>i</SUB>(l+1)=0;如果式子右边得到的数值大于1,则令<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">θ</SPAN><SUB>i</SUB>(l+1)=1。</P>
      <P>式(4.23)(4.24)所表示的学习算法对所选择的r<SUB>ji</SUB>、的初值较为敏感。在初值选择时一般选<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">θ</SPAN><SUB>i</SUB>=0。</P>
      <P>4.1.3 多种神经元组成的神经模糊控制器</P>
      <P>神经模糊控制器可以由多种神经元组成,这些神经元包括常规神经元,或神经元和与神经元等模糊神经元等。神经模糊控制器根据不同的推理规则,有不同的结构;所需的神经元不同,对于相同的推理规则其结构也不同。</P>
      <P>一、Mamdani推理的模糊控制器<BR>Mamdani推理规则的形式如下:<BR>R<SUB>i</SUB>:if 
      x<SUB>1</SUB>=A<SUB>i1</SUB> and x<SUB>2</SUB>=A<SUB>i2</SUB> and ...... 
      and x<SUB>n</SUB>=A<SUB>in</SUB> then y=B<SUB>j</SUB></P>
      <P>当输入信号为精确值X0时有:</P>
      <P>X<SUB>0</SUB>={x<SUB>01</SUB>,x<SUB>02</SUB>,……,x<SUB>0n</SUB>}</P>
      <P>则对于前件,有隶属度:</P>
      <P>A<SUB>i1</SUB>(x<SUB>01</SUB>),A<SUB>i2</SUB>(x<SUB>02</SUB>),……,A<SUB>in</SUB>(x<SUB>0n</SUB>)</P>
      <P>对于第i条推理规则,则得到其前件的适合度W<SUB>i</SUB>:</P>
      <P>W<SUB>i</SUB>=A<SUB>i1</SUB>(x<SUB>01</SUB>)<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∧</SPAN>A<SUB>i2</SUB>(x<SUB>02</SUB>)<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∧</SPAN>,……,<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∧</SPAN>A<SUB>in</SUB>(x<SUB>0n</SUB>) 
      (4.31)</P>
      <P>第i条推理规则的推理结果为</P>
      <P>W<SUB>i</SUB><SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∧</SPAN>B<SUB>i</SUB></P>
      <P>全部规则在X<SUB>0</SUB>作用时得到的推理结果为</P>
      <P>B<SUP>*</SUP>=U<SUB>i</SUB>(W<SUB>i</SUB><SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∧</SPAN>B<SUB>i</SUB>)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      (4.32)</P>
      <P>根据Mamdani推理规则,用经向基函数RBF(Radial Basis 
      Function)为激发函数的神经元,与神经元,或神经元,则可以组成模糊控制器。为了方便说明这种神经模糊控制器,考虑只在4条控制规则的情况。</P>
      <P>对于模糊控制器来说,有2个输入x<SUB>1</SUB>,x<SUB>2</SUB>,1个输出y。</P>
      <P>输人x<SUB>1</SUB>的空间的模糊划分为“大”(L),“小”(S),并表示为A<SUB>11</SUB>=L,A<SUB>21</SUB>=S。</P>
      <P>输入x<SUB>2</SUB>的空间的模糊划分也为“大”(L),“小”(S),并表示为A<SUB>12</SUB>=L,A<SUB>22</SUB>=S。</P>
      <P>输出y的空间的模糊划分为“大”(L),“偏大”(ML),“中”(M),“小”(S)。</P>
      <P>从而有4条推理规则:</P>
      <P>if x<SUB>1</SUB>=L and x<SUB>2</SUB>=L then y=L 
      <P>if x<SUB>1</SUB>=L and x<SUB>2</SUB>=S then y=ML 
      <P>if x<SUB>1</SUB>=S and x<SUB>2</SUB>=L then y=M 
      <P>if x<SUB>1</SUB>=S and x<SUB>2</SUB>=S then y=S 
      <P>也可以写成: 
      <P>if x<SUB>1</SUB>=A<SUB>11</SUB> and x<SUB>2</SUB>=A<SUB>12</SUB> then 
      y=B<SUB>1</SUB> 
      <P>if x<SUB>1</SUB>=A<SUB>11</SUB> and x<SUB>2</SUB>=A<SUB>22</SUB> then 
      y=B<SUB>2</SUB> 
      <P>if x<SUB>1</SUB>=A<SUB>21</SUB> and x2=A<SUB>12</SUB> then y=B<SUB>3 
      </SUB>
      <P>if x<SUB>1</SUB>=A<SUB>21</SUB> and x<SUB>2</SUB>=A<SUB>22</SUB> then 
      y=B<SUB>4</SUB> 
      <P>能完成这4条控制规则的神经模糊控制器如图4—2所示。 
      <P align=center><IMG height=270 src="第四章 神经模糊控制.files/7.htm1.gif" 
      width=602 border=0> 
      <P align=center>图4-2 Mamdani推理神经模糊控制器</P></TD></TR>
  <TR>
    <TD width="100%" height=200>
      <P>当输入信号为x<SUB>1</SUB><SUP>0</SUP>,x<SUB>2</SUB><SUP>0</SUP>时,对第1—4条推理规则分别产生前件的适合度为W<SUB>1</SUB>,W<SUB>2</SUB>,W<SUB>3</SUB>,W<SUB>4</SUB>: 
      </P>
      <P>W<SUB>1</SUB>=A<SUB>11</SUB>(x<SUB>1</SUB><SUP>0</SUP>)∧A<SUB>12</SUB>(x<SUB>2</SUB><SUP>0</SUP>)</P>
      <P>W<SUB>2</SUB>=A<SUB>11</SUB>(x<SUB>1</SUB><SUP>0</SUP>)∧A<SUB>22</SUB>(x<SUB>2</SUB><SUP>0</SUP>)</P>
      <P>W<SUB>3</SUB>=A<SUB>21</SUB>(x<SUB>1</SUB><SUP>0</SUP>)∧A<SUB>12</SUB>(x<SUB>2</SUB><SUP>0</SUP>)</P>
      <P>W<SUB>4</SUB>=A<SUB>21</SUB>(x<SUB>1</SUB><SUP>0</SUP>)∧A<SUB>22</SUB>(x<SUB>2</SUB><SUP>0</SUP>)</P>
      <P>从而,对应的第1—4条规则所产生的推理结果分别是:</P>
      <P>y<SUB>1</SUB>=W<SUB>1</SUB>∧B<SUB>1 </SUB></P>
      <P>y<SUB>2</SUB>=W<SUB>2</SUB>∧B<SUB>2 </SUB></P>
      <P>y<SUB>3</SUB>=W<SUB>3</SUB>∧B<SUB>3 </SUB></P>
      <P>y<SUB>4</SUB>=W<SUB>4</SUB>∧B<SUB>4</SUB></P>
      <P>全部推理规则产生的最终结果为</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="77%"><IMG height=31 src="第四章 神经模糊控制.files/7.htm2.gif" 
            width=195 border=0></TD>
          <TD width="23%">(4.33)</TD></TR>
        <TR>
          <TD width="77%">即有</TD>
          <TD width="23%"></TD></TR>
        <TR>
          <TD width="77%"><IMG height=40 src="第四章 神经模糊控制.files/7.htm3.gif" 
            width=138 border=0></TD>
          <TD width="23%">(4.34)</TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%" height=81>
      <P>在图4—2中。所示的神经网络一共有5层,它们组成了一个模糊控制器.下面分别说明各层的意义和作用。 </P>
      <P>第1层:这是输入节点,只用于输入X1,X2的值。</P>
      <P>第2层:这是模糊化层。这里的神经元是用径向基函数为激发函数的。径向基函数一般用高斯函数,钟形函数,梯形函数或三角形函数。径向基函数用于表述模糊量的隶属函数。</P>
      <P>高斯函数(Gaussian function)的表达式如下:</P>
      <P>G(x;a,c)=exp{-[(x-c)/a]<SUP>2</SUP>}&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      (4.35)</P>
      <P>其中:c是函数的中心,</P>
      <P>a是函数的宽度。</P>
      <P>高斯函数的形状如图4—3所示。</P>
      <P>钟形函数(Bell shape function)的表达式如下:</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="77%"><IMG height=47 src="第四章 神经模糊控制.files/7.htm4.gif" 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -