📄 企业数字神经网络系统1.htm
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0047)http://www.jgchina.com/ednns/ednnsbk/ednns2.htm -->
<HTML><HEAD><TITLE>企业数字神经网络系统</TITLE>
<META http-equiv=Content-Type content="text/html; charset=gb2312">
<META content="MSHTML 6.00.2800.1106" name=GENERATOR>
<META content=FrontPage.Editor.Document name=ProgId>
<STYLE type=text/css>UNKNOWN {
FONT-SIZE: 10pt; FONT-FAMILY: 宋体
}
.pb {
MARGIN: 5px 21px
}
.pb1 {
MARGIN: 5px 21px; TEXT-INDENT: 21px; LINE-HEIGHT: 14pt
}
.pd {
MARGIN: 5px 21px 5px 42px
}
.pd1 {
MARGIN: 5px 21px 5px 42px; TEXT-INDENT: 21px; LINE-HEIGHT: 14pt
}
.pb2 {
MARGIN: 5px 21px 5px 63px; LINE-HEIGHT: 14pt
}
.pb3 {
MARGIN: 5px 21px 5px 63px; TEXT-INDENT: 21px; LINE-HEIGHT: 14pt
}
</STYLE>
</HEAD>
<BODY link=#187ed1 bgColor=#ffffff leftMargin=0 topMargin=10>
<DIV align=center>
<TABLE cellSpacing=0 cellPadding=0 width=700 border=0>
<TBODY>
<TR>
<TD width="100%" height=14><FONT size=2><A
href="http://www.jgchina.com/ednns/ednnsbk/ednns.htm">回主页面</A></FONT></TD></TR>
<CENTER>
<TR>
<TD align=middle width="100%" height=56><FONT face=黑体
size=6>数字神经网络系统</FONT></TD></TR>
<TR>
<TD width="100%" height=12></TD></TR>
<TR>
<TD width="100%">
<P align=center><FONT face=黑体 size=4>第一篇 基础理论</FONT></P>
<P>一、 概述
<P><A name=二、生物原型研究>二、生物原型研究</A>
<P class=pb>2-1.人体神经结构
<P class=pb1>人工数字神经网络系统源于人脑神经网络。了解人脑神经网络的组成和原理,有助于对人工神经网络的理解。
<P class=pd>2-1-1.神经元
<P
class=pd1>人脑是认识客观世界的器官。研究表明,人的意识、思维、行为等脑的高级功能都与客观世界密切相关。神经科学起始于上个世纪末,1875年意大利解剖学家C.Golgi用染色体法首先识别出单个神经细胞,1889年Caial创立了神经元学说,指出了神经系统是由结构上相对独立的神经细胞构成,在最近几十年来的研究结果认为人脑的神经元效量为1013。每个神经元包含了以下几个结构特性:
<P class=pb2>2-1-1-1. 细胞体(Cell Body),其大小在5至100微米的直径不等。细胞体由细胞核,细胞质和细胞膜组成。
<P class=pb2>2-1-1-2.
铀突(Axon),是细胞体向其它细胞伸出的最长一条分支,即神经纤维,相当于细胞的输出,每个神经元只有一个。
<P class=pb2>2-1-1-3. 树突(也称枝晶,Dendrites),是细胞体向外伸出的许多较短的树状分支,相当于细胞的输入。
<P class=pb2>2-1-1-4.
突触(Synaptic),是神经元之间连接的接口。整个脑内突触的数目大约在1014一1015之间,通过突触互连,连接方式不同,其生理作用也不同。突触的信息传递特性可变,因此细胞之间的连接强度可变,这是一种柔性连接,也称为神经元结构的可塑性。
<P
class=pb2>另外,研究表明,神经元细胞膜内外之间存在电位差,称为膜电位。膜外为正,膜内为负。其大小约为几十微伏。膜电压接受神经其它神经元的输入后,电位上升或下降,当转入冲动的时空整合结果,使膜电位上升,而且当超过叫做动作电位的团值时,细胞进入兴奋状态,产生神经冲动,由轴突输出,这个过程称为兴奋。动作阂值电位约为40微伏13传入的冲动时空整合结果使膜电压下降并低于动作电压的闻值时,细胞进入抑制状态,无神经冲动输出。
<P class=pd>2-1-2.信息传递
<P
class=pd1>突触是神经细胞间传递信息的结构,突触由三部分构成,即突触前成分,突触间隙和突触后成分。突触所传递的信息采用电传递和化学传递两种方式。突触前成分是神经末梢上一个特化了的部分。突触末梢形成许多球形的小体。小体上直接进入突触连接部分的质膜叫做突触前膜。小体原浆中含有大量的突触小泡,小泡的直径约为200--800埃,内含神经递质。突触前膜外面是突触间隙,是突触前后之间的一个区域,其宽度为100-500埃。突触间隙的液体与细胞外液体是连通的,因此具有相同的离子组成。突触后细胞的一边是突触下膜,它是突触后细胞质膜特化的区域,含有待殊的分子受体。突触的结构示图和突轴信息传递过程。
</P></TD></TR></CENTER>
<TR>
<TD width="100%">
<TABLE cellSpacing=5 cellPadding=0 width="100%" border=0>
<TBODY>
<TR>
<TD align=middle width="100%"><IMG height=307
src="企业数字神经网络系统1.files/5.gif" width=506 border=0></TD></TR>
<TR>
<TD align=middle width="100%"><IMG height=196
src="企业数字神经网络系统1.files/6.gif" width=494
border=0></TD></TR></TBODY></TABLE></TD></TR>
<CENTER>
<TR>
<TD width="100%">
<P
class=pd1>高等动物神经系统中,突触前的电活动不直接引起突触后成分的活动,不存在电学耦连。突触传递一般通过持殊的化学物质中介,这种物质叫做神经介质或递质,突触的信息传递只能由突触前到突触后,不存在反向活动的机制。因此突触传递是单方向的。兴奋一分泌耦连,神经介质释放和介质在间隙的扩散直到突触后膜的去极化约需o。5-1毫秒,这就是突延迟。用微电极技术研究脊髓前角细胞的模电位。根据突触后电位的反应,将突触分为两种:兴奋性突触和抑制性突触。神经末梢释放介质使突触后膜产生极化反应,即兴奋性突触后电位,这是兴奋性突触。如果释放介质使突触后膜产生超极化反应,即抑制性突触后电位,则是抑制性突触。在许多可兴奋的细胞之间发现电学期连。现已证明,缝隙连接在形态上代表这种耦连。电学突触能够提供更大的传输速率,并在神经细胞间产生整合作用。
<P
class=pd1>另外研究也表明了神经网络的复杂多样性,不仅在于神经元和突触的数量大,组合方式复杂和联系广泛,还在于突触传递机制中,释放神经递质是实现突触传递机制的中心环节,不同的神经递质有着不同的作用性质和特点。神经递质在维持正常生理功能方面起着重要的作用,通过电信号-化学反应信号系统传递神经信息,进行复杂的信息加工,实现对机体的调节控制。</P>
<P class=pb>2-2. 神经组织</P>
<P
class=pb1>神经元与神经纤维构成的神经组织具有两种基本特性,即兴奋与传导。当神经元的某一部分受到某种刺激时,在受刺激的部位就产生兴奋。这种兴奋会沿着神经元扩散开来,并在一定的条件下通过突触传达到相连的神经细胞。神经纤维的一部分兴奋起来时产生电位或电流的变化。这就是生物电流,是研究神经兴奋状态的标志。电位的变化非常迅速且短暂,叫做峰形电位。神经兴奋的结果产生神经冲动,神经冲动是能量传递的一种方式。通常,一条神经纤维接受一个适度的刺激时测会产生一个冲动。但当对一个神经来进行刺激时,则会引起若干纤维同时冲动。刺激越强,则发生冲动的神经纤维越多,反之亦然。实验表明,神经冲动的能量并非来自刺激。而是神经纤维本身产生的。刺激的作用是引发神经纤维产生冲动。</P>
<P
class=pb1>对于人体来说,在外界、内界环境刺激下,通过神经系统,机体对刺激产生规律性回答。外部和内部刺激物作用于感受器,引起神经冲动。神经冲动沿着传入神经传达到神经中枢。通过中枢的神经联系,再经传出神经传达到效应器官,引起反应。这就是一个完整的反射过程。产生反射活动的基本结构组成有感受器,传入神经,神经中枢,传出神经和效应器。感受器一舱是神经组织末梢的特殊结构,它把刺激的能量转变为神经的兴奋过程,所以感受器是一种换能装置。</P>
<P
class=pb1>某一特定的反射往往是在刺激特定的感受器后产生的,该特定感受器所在的部位成为这个感受器的感受野。神经中枢是指调节某一特定生理机能的神经细胞群。神经中枢的活动可以通过神经纤维直接影响效应器,在某些情况下,也可以通过体液的道路间接影响效应器,这种体液调节就是指内分泌腺的调节。这时反射是按感受器、传入神经、神经中枢、传出神经、内分泌腺、激素在血液中转运、效应器这样的过程进行。</P>
<P
class=pb1>反射可以分为两种:无条件反射和条件反射。无条件反射是先天性的,一定刺激作用于一定的感受野时。常引起一定的反射。例如,食物入口引起唾液分泌反射,机械刺激角膜产生眨眼反射等。无条件反射使人们能初步适应环境。条件反射是在机体的生活中形成的,它可以随着机体的外部环境和内部状况的变化而变化。条件反射的建立大大扩展了机体的反应范围。比无条件反射有更大的预见性和灵活性,更适应于复杂变化的生存环境。在实际活动中,无条件反射和条件反射的划分有相对的意义,肌体的每一活动都具有这两种反射的性质。在肌体内。无条件反射只有在新生时出现,在这以后由于条件反射不断建立,条件反射和无条件反射越来越不可分割地融合在一起。每次无条件反射出现,都有条件反射参与,而条件反射归根到底是在无条件反射的基础上建立的,它的构成已经把某些无条件反射的成分包括了进去。所以,几乎所有的生理机能都是无条件反射相条件反射的有机统一。</P>
<P class=pb>2-3. 视觉神经</P>
<P
class=pb1>眼是人接收来自外部信息的最主要的接收器官,是最为复杂的感官器官。外界物体的光线射入眼中,聚焦后在视网膜上成像,视网膜发出神经冲动达到大脑皮层视区,产生视觉。人眼的简要水平切面如图所示。角膜与晶状体之间是前房,虹膜与晶状体之间是后房,前房、后房之间都充满液体叫房水。晶状体的后方直到视网膜充满透明的胶状物质,叫玻璃体。角膜,房水与晶状体等构成折光系统,它是透明的组织,能把物像形成在视网膜上。在所有的感官系统中,视网膜的结构最复杂。视网膜为感光系统,能感受光的刺激,发放神经冲动。它不仅有一级神经元(感光细胞),还有二级神经元(双极细胞)和三级神经无(神经节细胞)。</P>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -