📄 2.3 神经网络控制系统.htm
字号:
<TD width="29%">(2.75)</TD></TR></TBODY></TABLE></TD></TR>
<TR>
<TD width="100%" height=39>
<P>其中:1<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>i<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>k;m<SUB>1</SUB><<SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>;m<SUB>2</SUB><<SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞。</SPAN>
</P>
<P>根据式(2.52)对象的满足条件,从式(2.53)则有</P>
<TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
<TBODY>
<TR>
<TD width="71%"><IMG height=36 src="2.3 神经网络控制系统.files/5.3.ht26.gif"
width=512 border=0></TD>
<TD width="29%">(2.76)</TD></TR>
<TR>
<TD width="71%"><FONT size=2>既然,给定信号r是有界的,所以跟踪误差有</FONT></TD>
<TD width="29%"></TD></TR>
<TR>
<TD width="71%"><IMG height=31 src="2.3 神经网络控制系统.files/5.3.ht27.gif"
width=364 border=0></TD>
<TD width="29%">(2.77)</TD></TR></TBODY></TABLE></TD></TR>
<TR>
<TD width="100%" height=6>
<P>从而有|e'(k)|+m3<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≥</SPAN>|y(k)|
</P>
<P>由此,式(2.76)可以写为:</P>
<TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
<TBODY>
<TR>
<TD width="86%"><IMG height=42 src="2.3 神经网络控制系统.files/5.3.ht28.gif"
width=701 border=0></TD>
<TD width="14%">(2.78)</TD></TR></TBODY></TABLE></TD></TR>
<TR>
<TD width="100%" height=70>
<P>其中:0<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>C<SUB>1</SUB><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN><SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>;0<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN>C<SUB>2</SUB><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">≤</SPAN><SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>。
</P>
<P>假设跟踪误差e'(k)有界,则从式(2.78)可知:<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>x(k)<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>同样有界;这样从式(2.74)可知</P>
<TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
<TBODY>
<TR>
<TD width="71%"><IMG height=35 src="2.3 神经网络控制系统.files/5.3.ht30.gif"
width=128 border=0></TD>
<TD width="29%">(2.79)</TD></TR>
<TR>
<TD width="71%"><FONT size=2>显然,定理的性质(2)成立。
<BR>假设跟踪误差e'(k)无界,则存在时刻序列|kn|,令</FONT></TD>
<TD width="29%"></TD></TR>
<TR>
<TD width="71%"><IMG height=42 src="2.3 神经网络控制系统.files/5.3.ht29.gif"
width=160 border=0></TD>
<TD width="29%">(2.80)</TD></TR></TBODY></TABLE></TD></TR>
<TR>
<TD width="100%">
<P>取m4=max(1,<SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">ε</SPAN>)
</P>
<P>考虑</P>
<P><IMG height=57 src="2.3 神经网络控制系统.files/5.3.ht31.gif" width=284
border=0></P>
<TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
<TBODY>
<TR>
<TD width="70%"><IMG height=247
src="2.3 神经网络控制系统.files/5.3.ht32.gif" width=320 border=0></TD>
<TD width="30%">(2.81)</TD></TR>
<TR>
<TD width="70%"><FONT size=2>对式(2.81)取极限有</FONT></TD>
<TD width="30%"></TD></TR>
<TR>
<TD width="70%"><IMG height=159
src="2.3 神经网络控制系统.files/5.3.ht33.gif" width=464 border=0></TD>
<TD width="30%">(2.82)</TD></TR></TBODY></TABLE></TD></TR>
<TR>
<TD width="100%" height=1174>
<P>这个极限存在说明e'(K)有界,假设其无界不成立。 </P>
<P>由于e'(k)有界,故式(2.79)是必定成立的。由于e'(k)=y(k)-r(k),而r(k)有界,所以,y(k)有界。从式(2.75)可知u(k)也有界。则定理的两个性质成立。</P>
<P>证毕。</P>
<P>四、系统实际运行情况</P>
<P>当对象的结构不同时,可以用于检验图2-16所示的神经适应控制系统的运行结果。对象仿真器PE,神经控制器NC分别由式(2.52)-(2.55)和式(2.57)-(2.59)所描述;学习时采用式(2.56)和式(2.58)。</P>
<P>1.对有噪声的稳定对象的控制</P>
<P>对象由下式表示</P>
<P><IMG height=55 src="2.3 神经网络控制系统.files/5.3.ht34.gif" width=366
border=0></P>
<P>设对象仿真器PE和神经控制器NC输入的向量为6个元素,有n=m=3。在训练学习时PE的权系数向量更新取<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">α</SPAN>和<SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">ε</SPAN>的值如下:
<P><IMG height=52 src="2.3 神经网络控制系统.files/5.3.ht35.gif" width=93 border=0>
<P>权系数向量的初始值取
<P>W(0)=[0,0,0,1,0,0]<SUP>T</SUP>
<P align=center><IMG height=342 src="2.3 神经网络控制系统.files/5.3.ht36.gif"
width=467 border=0>
<P align=center>图2-19 给定值r和对象输出y
<P align=center><IMG height=253 src="2.3 神经网络控制系统.files/5.3.ht37.gif"
width=461 border=0>
<P align=center>图2-20 NC产生的控制信号u
<P align=center><IMG height=237 src="2.3 神经网络控制系统.files/5.3.ht38.gif"
width=481 border=0>
<P align=center>图2-21 PE的学习过程W(k)的变化 </P></TD></TR>
<TR>
<TD width="100%" height=1319>
<P>噪声是平均值为零的高斯白噪声。 </P>
<P>给定输入r是幅值为1的方波;每方波周期采样80次。</P>
<P>控制结果和情况如图2—19和图2—20所示。其中图2—19是对象输出和给定值的情况;图2—20是NC产生的控制信号u(k)。<BR>很明显,对象仿真器能正确地预测对象的动态过程。</P>
<P>图2—21给出了对象仿真器PE的学习过程。</P>
<P>2.对不稳定对象的控制</P>
<P>不稳定对象由下式表示</P>
<P><IMG height=54 src="2.3 神经网络控制系统.files/5.3.ht39.gif" width=390
border=0></P>
<P>在系统中,PE和NC的输入都采用6个元素的向量,故n=m=3。在训练学习时.PE权系数向量更新取<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">α</SPAN>和<SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">ε</SPAN>的值为</P>
<P><IMG height=51 src="2.3 神经网络控制系统.files/5.3.ht40.gif" width=94
border=0></P>
<P>权系数向量初始化取值为</P>
<P>W(0)=[0,0,0,1,0,0]<SUP>T</SUP></P>
<P>给定输入r为幅度为1的方波,方波每周期采样80次。</P>
<P>控制情况和结果以及邢学习时的w(k)变化情况分别如图2—22,图2—23,图2—24所示。对于不稳定对象,显然在过渡过程中有较大的超调;但在PE学习之后,对象输出能跟踪给定r。</P>
<P align=center><IMG height=355 src="2.3 神经网络控制系统.files/5.3.ht41.gif"
width=480 border=0></P>
<P align=center>图2-22 给定r和对象输出y的波形</P>
<P align=center><IMG height=238 src="2.3 神经网络控制系统.files/5.3.ht42.gif"
width=457 border=0></P>
<P align=center>图2-23 NC产生的控制信号U的波形</P>
<P align=center><IMG height=324 src="2.3 神经网络控制系统.files/5.3.ht43.gif"
width=472 border=0></P>
<P align=center>图2-24 PE学习时W(k)的变化情况 </P></TD></TR>
<TR>
<TD width="100%" height=17>
<P align=right><A
href="http://www.jgchina.com/ednns/ednnsbk/5.2.htm">上一页</A>
<A href="http://www.jgchina.com/ednns/ednnsbk/5.3.2.htm">下一页</A>
</P></TD></TR></TBODY></TABLE></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -