⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 2.3 神经网络控制系统.htm

📁 企业数字神经网络功能开发文章
💻 HTM
📖 第 1 页 / 共 3 页
字号:
      <P>证明:</P>
      <P>考虑权系数误差ΔW(k)</P>
      <P>ΔW(k)=W(K)-W<SUB>0</SUB>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      (2.62)</P>
      <P>根据式(2.55),(2.6I),(2.62),则系统输出误差e(k)可以表达为权系数误差ΔW的函数,即</P>
      <P><IMG height=177 src="2.3 神经网络控制系统.files/5.3.ht10.gif" width=425 
      border=0></P>
      <P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      =-X<SUP>T</SUP>(k-1)ΔW(k-1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      (2.63)</P>
      <P>把式(2.56)两边减去W<SUB>0</SUB>,可求出权系数误差,则得:</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="77%"><IMG height=47 src="2.3 神经网络控制系统.files/5.3.ht11.gif" 
            width=425 border=0></TD>
          <TD width="23%">(2.64)</TD></TR>
        <TR>
          <TD width="77%"><FONT size=2>把上式(2.64)两边平方有</FONT></TD>
          <TD width="23%"></TD></TR>
        <TR>
          <TD width="100%" colSpan=2>
            <DIV align=center><IMG height=79 
            src="2.3 神经网络控制系统.files/5.3.ht12.gif" width=670 
border=0></DIV></TD></TR>
        <TR>
          <TD width="100%" colSpan=2>
            <P align=right>(2.65) </P></TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%" height=127>
      <P>从式(2.63)可知 </P>
      <P>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; e(k)=-X<SUP>T</SUP>(k-1)ΔW(k-1)</P>
      <P>即有</P>
      <P><IMG height=49 src="2.3 神经网络控制系统.files/5.3.ht13.gif" width=235 
      border=0></P>
      <P>代入式(2.65),有</P>
      <DIV align=center>
      <CENTER>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" border=0>
        <TBODY>
        <TR>
          <TD width="50%"><IMG height=155 
            src="2.3 神经网络控制系统.files/5.3.ht14.gif" width=647 border=0></TD>
          <TD width="50%">(2.66)</TD></TR></TBODY></TABLE></CENTER></DIV></TD></TR>
  <TR>
    <TD width="100%" height=69>
      <P>从式(2.66)中,有 </P>
      <P><SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">α∈</SPAN>(O,2),故即<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">α</SPAN>>0;</P>
      <P>X(k-1)/XT(k-1),XT(k-1)X(k-1)都为正;</P>
      <P>e(k)2也必定大于0,<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">ε</SPAN>是趋于0的正数。</P>
      <P>所以,在式(2.66)中</P>
      <DIV align=center>
      <CENTER>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" border=0>
        <TBODY>
        <TR>
          <TD width="75%"><IMG height=46 src="2.3 神经网络控制系统.files/5.3.ht15.gif" 
            width=256 border=0></TD>
          <TD width="25%">(2.67)</TD></TR></TBODY></TABLE></CENTER></DIV></TD></TR>
  <TR>
    <TD width="100%" height=286>
      <P>的结果确定了[ΔW(k)]<SUP>2</SUP>-[ΔW(k-1)]<SUP>2</SUP>的正负。 </P>
      <P>令 H=x<SUP>T</SUP>(k-1)x(k-1)</P>
      <P>则式(2.67)可写为:</P>
      <P><IMG height=41 src="2.3 神经网络控制系统.files/5.3.ht16.gif" width=100 
      border=0></P>
      <P>则有</P>
      <P><IMG height=43 src="2.3 神经网络控制系统.files/5.3.ht17.gif" width=224 
      border=0></P>
      <P><IMG height=42 src="2.3 神经网络控制系统.files/5.3.ht18.gif" width=448 
      border=0></P>
      <P>从而可知</P>
      <P><IMG height=45 src="2.3 神经网络控制系统.files/5.3.ht19.gif" width=323 
      border=0></P>
      <P>最后有</P>
      <P>[<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>W(k)]<SUP>2</SUP>-[<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>W(k-1)]<SUP>2</SUP>&lt;0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      (2.68)</P>
      <P>式(2.68)说明引理的性质(1)成立。</P>
      <P>根据性质(1),则当k——<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>,则有w(k)=W<SUB>0</SUB>.故而在式(2.66)中两边都为0。这也就是必定有</P>
      <DIV align=center>
      <CENTER>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" border=0>
        <TBODY>
        <TR>
          <TD width="50%"><IMG height=51 src="2.3 神经网络控制系统.files/5.3.ht20.gif" 
            width=288 border=0></TD>
          <TD width="50%">(2.69)</TD></TR></TBODY></TABLE></CENTER></DIV></TD></TR>
  <TR>
    <TD width="100%" height=414>
      <P>可见,引理的性质(2)成立。 </P>
      <P>证毕。</P>
      <P>有了上面的引理,就可以给出由式(2.53)—(2.59)组成的控制结构对对象式(2.52)执行适应控制的闭环性质定理。</P>
      <P>定理:在对象由式(2.52)描述的控制中,式(2.53)—(2.59)构成的适应控制有如下的闭环性质:</P>
      <P>(1)输入信号u(t),输出信号y(t)都是有界的。</P>
      <P><IMG height=30 src="2.3 神经网络控制系统.files/5.3.ht21.gif" width=230 
      border=0></P>
      <P>证明:</P>
      <P>设系统的跟踪误差用e'(k)表示</P>
      <P>e'(k)=y(k)-r(k)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
      (2.70)</P>
      <P>y(k)由式(2.61)给出。</P>
      <P>r(k)可由式(2.57),(2.58),(2.59)求出,先用W<SUB>n+1</SUB>(k)乘〔2.59)两边,则有</P>
      <P>W<SUB>n+1</SUB>(k-1)u(k-1)=r(k)+W<SUB>1</SUB>(k-1)(-X<SUB>1</SUB>(k-1))+.....,+W<SUB>n</SUB>(k-1)(-X<SUB>n</SUB>(k-1))+W<SUB>n+2</SUB>(k-1)(-X<SUB>n+2</SUB>(k-1))+......,Wn+m(k-1)(-Xn+m(k-1))</P>
      <P>整理后有</P>
      <P>r(k)=W<SUB>1</SUB>(k-1)X<SUB>1</SUB>(k-1)+......,+W<SUB>n</SUB>(k-1)X<SUB>n</SUB>(k-1)+W<SUB>n+1</SUB>(k-1)u(k-1)+W<SUB>n+2</SUB>(k-1)X<SUB>n+2</SUB>(k-1)+......,+W<SUB>n+m</SUB>(k-1)X<SUB>n+m</SUB>(k-1)</P>
      <P align=right>(2.71)&nbsp;&nbsp;&nbsp;&nbsp;</P>
      <P>由于 u(k-1)=Xn+1(k-1)</P>
      <P>故而有</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="71%"><IMG height=43 src="2.3 神经网络控制系统.files/5.3.ht22.gif" 
            width=288 border=0></TD>
          <TD width="29%">(2.72)</TD></TR>
        <TR>
          <TD width="71%"><FONT size=2>从式(2.61)和式(2.72),则有</FONT></TD>
          <TD width="29%"></TD></TR>
        <TR>
          <TD width="71%"><IMG height=111 
            src="2.3 神经网络控制系统.files/5.3.ht23.gif" width=448 border=0></TD>
          <TD width="29%">(2.73)</TD></TR>
        <TR>
          <TD width="71%"><FONT size=2>从引理的性质(2)有</FONT></TD>
          <TD width="29%"></TD></TR>
        <TR>
          <TD width="71%"><IMG height=52 src="2.3 神经网络控制系统.files/5.3.ht25.gif" 
            width=274 border=0></TD>
          <TD width="29%">(2.74)</TD></TR></TBODY></TABLE></TD></TR>
  <TR>
    <TD width="100%" height=2>
      <P>只要证明x<SUP>T</SUP>(k-1)x(k-1)是有界的,就可以证明e(<SPAN 
      style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>)=0,也就可以证明定理中的性质(2)。 
      </P>
      <P>下面证明<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>x(k-1)<SPAN 
      style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>有限。</P>
      <P>从对象式(2.52)有关条件,对象的输入输出信号满足</P>
      <TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
        <TBODY>
        <TR>
          <TD width="71%"><IMG height=33 src="2.3 神经网络控制系统.files/5.3.ht24.gif" 
            width=288 border=0></TD>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -