📄 2.3 神经网络控制系统.htm
字号:
<P>证明:</P>
<P>考虑权系数误差ΔW(k)</P>
<P>ΔW(k)=W(K)-W<SUB>0</SUB>
(2.62)</P>
<P>根据式(2.55),(2.6I),(2.62),则系统输出误差e(k)可以表达为权系数误差ΔW的函数,即</P>
<P><IMG height=177 src="2.3 神经网络控制系统.files/5.3.ht10.gif" width=425
border=0></P>
<P>
=-X<SUP>T</SUP>(k-1)ΔW(k-1)
(2.63)</P>
<P>把式(2.56)两边减去W<SUB>0</SUB>,可求出权系数误差,则得:</P>
<TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
<TBODY>
<TR>
<TD width="77%"><IMG height=47 src="2.3 神经网络控制系统.files/5.3.ht11.gif"
width=425 border=0></TD>
<TD width="23%">(2.64)</TD></TR>
<TR>
<TD width="77%"><FONT size=2>把上式(2.64)两边平方有</FONT></TD>
<TD width="23%"></TD></TR>
<TR>
<TD width="100%" colSpan=2>
<DIV align=center><IMG height=79
src="2.3 神经网络控制系统.files/5.3.ht12.gif" width=670
border=0></DIV></TD></TR>
<TR>
<TD width="100%" colSpan=2>
<P align=right>(2.65) </P></TD></TR></TBODY></TABLE></TD></TR>
<TR>
<TD width="100%" height=127>
<P>从式(2.63)可知 </P>
<P> e(k)=-X<SUP>T</SUP>(k-1)ΔW(k-1)</P>
<P>即有</P>
<P><IMG height=49 src="2.3 神经网络控制系统.files/5.3.ht13.gif" width=235
border=0></P>
<P>代入式(2.65),有</P>
<DIV align=center>
<CENTER>
<TABLE cellSpacing=0 cellPadding=0 width="80%" border=0>
<TBODY>
<TR>
<TD width="50%"><IMG height=155
src="2.3 神经网络控制系统.files/5.3.ht14.gif" width=647 border=0></TD>
<TD width="50%">(2.66)</TD></TR></TBODY></TABLE></CENTER></DIV></TD></TR>
<TR>
<TD width="100%" height=69>
<P>从式(2.66)中,有 </P>
<P><SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">α∈</SPAN>(O,2),故即<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">α</SPAN>>0;</P>
<P>X(k-1)/XT(k-1),XT(k-1)X(k-1)都为正;</P>
<P>e(k)2也必定大于0,<SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">ε</SPAN>是趋于0的正数。</P>
<P>所以,在式(2.66)中</P>
<DIV align=center>
<CENTER>
<TABLE cellSpacing=0 cellPadding=0 width="80%" border=0>
<TBODY>
<TR>
<TD width="75%"><IMG height=46 src="2.3 神经网络控制系统.files/5.3.ht15.gif"
width=256 border=0></TD>
<TD width="25%">(2.67)</TD></TR></TBODY></TABLE></CENTER></DIV></TD></TR>
<TR>
<TD width="100%" height=286>
<P>的结果确定了[ΔW(k)]<SUP>2</SUP>-[ΔW(k-1)]<SUP>2</SUP>的正负。 </P>
<P>令 H=x<SUP>T</SUP>(k-1)x(k-1)</P>
<P>则式(2.67)可写为:</P>
<P><IMG height=41 src="2.3 神经网络控制系统.files/5.3.ht16.gif" width=100
border=0></P>
<P>则有</P>
<P><IMG height=43 src="2.3 神经网络控制系统.files/5.3.ht17.gif" width=224
border=0></P>
<P><IMG height=42 src="2.3 神经网络控制系统.files/5.3.ht18.gif" width=448
border=0></P>
<P>从而可知</P>
<P><IMG height=45 src="2.3 神经网络控制系统.files/5.3.ht19.gif" width=323
border=0></P>
<P>最后有</P>
<P>[<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>W(k)]<SUP>2</SUP>-[<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">Δ</SPAN>W(k-1)]<SUP>2</SUP><0
(2.68)</P>
<P>式(2.68)说明引理的性质(1)成立。</P>
<P>根据性质(1),则当k——<SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>,则有w(k)=W<SUB>0</SUB>.故而在式(2.66)中两边都为0。这也就是必定有</P>
<DIV align=center>
<CENTER>
<TABLE cellSpacing=0 cellPadding=0 width="80%" border=0>
<TBODY>
<TR>
<TD width="50%"><IMG height=51 src="2.3 神经网络控制系统.files/5.3.ht20.gif"
width=288 border=0></TD>
<TD width="50%">(2.69)</TD></TR></TBODY></TABLE></CENTER></DIV></TD></TR>
<TR>
<TD width="100%" height=414>
<P>可见,引理的性质(2)成立。 </P>
<P>证毕。</P>
<P>有了上面的引理,就可以给出由式(2.53)—(2.59)组成的控制结构对对象式(2.52)执行适应控制的闭环性质定理。</P>
<P>定理:在对象由式(2.52)描述的控制中,式(2.53)—(2.59)构成的适应控制有如下的闭环性质:</P>
<P>(1)输入信号u(t),输出信号y(t)都是有界的。</P>
<P><IMG height=30 src="2.3 神经网络控制系统.files/5.3.ht21.gif" width=230
border=0></P>
<P>证明:</P>
<P>设系统的跟踪误差用e'(k)表示</P>
<P>e'(k)=y(k)-r(k)
(2.70)</P>
<P>y(k)由式(2.61)给出。</P>
<P>r(k)可由式(2.57),(2.58),(2.59)求出,先用W<SUB>n+1</SUB>(k)乘〔2.59)两边,则有</P>
<P>W<SUB>n+1</SUB>(k-1)u(k-1)=r(k)+W<SUB>1</SUB>(k-1)(-X<SUB>1</SUB>(k-1))+.....,+W<SUB>n</SUB>(k-1)(-X<SUB>n</SUB>(k-1))+W<SUB>n+2</SUB>(k-1)(-X<SUB>n+2</SUB>(k-1))+......,Wn+m(k-1)(-Xn+m(k-1))</P>
<P>整理后有</P>
<P>r(k)=W<SUB>1</SUB>(k-1)X<SUB>1</SUB>(k-1)+......,+W<SUB>n</SUB>(k-1)X<SUB>n</SUB>(k-1)+W<SUB>n+1</SUB>(k-1)u(k-1)+W<SUB>n+2</SUB>(k-1)X<SUB>n+2</SUB>(k-1)+......,+W<SUB>n+m</SUB>(k-1)X<SUB>n+m</SUB>(k-1)</P>
<P align=right>(2.71) </P>
<P>由于 u(k-1)=Xn+1(k-1)</P>
<P>故而有</P>
<TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
<TBODY>
<TR>
<TD width="71%"><IMG height=43 src="2.3 神经网络控制系统.files/5.3.ht22.gif"
width=288 border=0></TD>
<TD width="29%">(2.72)</TD></TR>
<TR>
<TD width="71%"><FONT size=2>从式(2.61)和式(2.72),则有</FONT></TD>
<TD width="29%"></TD></TR>
<TR>
<TD width="71%"><IMG height=111
src="2.3 神经网络控制系统.files/5.3.ht23.gif" width=448 border=0></TD>
<TD width="29%">(2.73)</TD></TR>
<TR>
<TD width="71%"><FONT size=2>从引理的性质(2)有</FONT></TD>
<TD width="29%"></TD></TR>
<TR>
<TD width="71%"><IMG height=52 src="2.3 神经网络控制系统.files/5.3.ht25.gif"
width=274 border=0></TD>
<TD width="29%">(2.74)</TD></TR></TBODY></TABLE></TD></TR>
<TR>
<TD width="100%" height=2>
<P>只要证明x<SUP>T</SUP>(k-1)x(k-1)是有界的,就可以证明e(<SPAN
style="FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">∞</SPAN>)=0,也就可以证明定理中的性质(2)。
</P>
<P>下面证明<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>x(k-1)<SPAN
style="FONT-SIZE: 10.5pt; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.0pt; mso-bidi-font-family: 'Times New Roman'; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">‖</SPAN>有限。</P>
<P>从对象式(2.52)有关条件,对象的输入输出信号满足</P>
<TABLE cellSpacing=0 cellPadding=0 width="80%" align=center border=0>
<TBODY>
<TR>
<TD width="71%"><IMG height=33 src="2.3 神经网络控制系统.files/5.3.ht24.gif"
width=288 border=0></TD>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -