📄 rfc2181.txt
字号:
Network Working Group R. ElzRequest for Comments: 2181 University of MelbourneUpdates: 1034, 1035, 1123 R. BushCategory: Standards Track RGnet, Inc. July 1997 Clarifications to the DNS SpecificationStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.1. Abstract This document considers some areas that have been identified as problems with the specification of the Domain Name System, and proposes remedies for the defects identified. Eight separate issues are considered: + IP packet header address usage from multi-homed servers, + TTLs in sets of records with the same name, class, and type, + correct handling of zone cuts, + three minor issues concerning SOA records and their use, + the precise definition of the Time to Live (TTL) + Use of the TC (truncated) header bit + the issue of what is an authoritative, or canonical, name, + and the issue of what makes a valid DNS label. The first six of these are areas where the correct behaviour has been somewhat unclear, we seek to rectify that. The other two are already adequately specified, however the specifications seem to be sometimes ignored. We seek to reinforce the existing specifications.Elz & Bush Standards Track [Page 1]RFC 2181 Clarifications to the DNS Specification July 1997Contents 1 Abstract ................................................... 1 2 Introduction ............................................... 2 3 Terminology ................................................ 3 4 Server Reply Source Address Selection ...................... 3 5 Resource Record Sets ....................................... 4 6 Zone Cuts .................................................. 8 7 SOA RRs .................................................... 10 8 Time to Live (TTL) ......................................... 10 9 The TC (truncated) header bit .............................. 11 10 Naming issues .............................................. 11 11 Name syntax ................................................ 13 12 Security Considerations .................................... 14 13 References ................................................. 14 14 Acknowledgements ........................................... 15 15 Authors' Addresses ......................................... 152. Introduction Several problem areas in the Domain Name System specification [RFC1034, RFC1035] have been noted through the years [RFC1123]. This document addresses several additional problem areas. The issues here are independent. Those issues are the question of which source address a multi-homed DNS server should use when replying to a query, the issue of differing TTLs for DNS records with the same label, class and type, and the issue of canonical names, what they are, how CNAME records relate, what names are legal in what parts of the DNS, and what is the valid syntax of a DNS name. Clarifications to the DNS specification to avoid these problems are made in this memo. A minor ambiguity in RFC1034 concerned with SOA records is also corrected, as is one in the definition of the TTL (Time To Live) and some possible confusion in use of the TC bit.Elz & Bush Standards Track [Page 2]RFC 2181 Clarifications to the DNS Specification July 19973. Terminology This memo does not use the oft used expressions MUST, SHOULD, MAY, or their negative forms. In some sections it may seem that a specification is worded mildly, and hence some may infer that the specification is optional. That is not correct. Anywhere that this memo suggests that some action should be carried out, or must be carried out, or that some behaviour is acceptable, or not, that is to be considered as a fundamental aspect of this specification, regardless of the specific words used. If some behaviour or action is truly optional, that will be clearly specified by the text.4. Server Reply Source Address Selection Most, if not all, DNS clients, expect the address from which a reply is received to be the same address as that to which the query eliciting the reply was sent. This is true for servers acting as clients for the purposes of recursive query resolution, as well as simple resolver clients. The address, along with the identifier (ID) in the reply is used for disambiguating replies, and filtering spurious responses. This may, or may not, have been intended when the DNS was designed, but is now a fact of life. Some multi-homed hosts running DNS servers generate a reply using a source address that is not the same as the destination address from the client's request packet. Such replies will be discarded by the client because the source address of the reply does not match that of a host to which the client sent the original request. That is, it appears to be an unsolicited response.4.1. UDP Source Address Selection To avoid these problems, servers when responding to queries using UDP must cause the reply to be sent with the source address field in the IP header set to the address that was in the destination address field of the IP header of the packet containing the query causing the response. If this would cause the response to be sent from an IP address that is not permitted for this purpose, then the response may be sent from any legal IP address allocated to the server. That address should be chosen to maximise the possibility that the client will be able to use it for further queries. Servers configured in such a way that not all their addresses are equally reachable from all potential clients need take particular care when responding to queries sent to anycast, multicast, or similar, addresses.Elz & Bush Standards Track [Page 3]RFC 2181 Clarifications to the DNS Specification July 19974.2. Port Number Selection Replies to all queries must be directed to the port from which they were sent. When queries are received via TCP this is an inherent part of the transport protocol. For queries received by UDP the server must take note of the source port and use that as the destination port in the response. Replies should always be sent from the port to which they were directed. Except in extraordinary circumstances, this will be the well known port assigned for DNS queries [RFC1700].5. Resource Record Sets Each DNS Resource Record (RR) has a label, class, type, and data. It is meaningless for two records to ever have label, class, type and data all equal - servers should suppress such duplicates if encountered. It is however possible for most record types to exist with the same label, class and type, but with different data. Such a group of records is hereby defined to be a Resource Record Set (RRSet).5.1. Sending RRs from an RRSet A query for a specific (or non-specific) label, class, and type, will always return all records in the associated RRSet - whether that be one or more RRs. The response must be marked as "truncated" if the entire RRSet will not fit in the response.5.2. TTLs of RRs in an RRSet Resource Records also have a time to live (TTL). It is possible for the RRs in an RRSet to have different TTLs. No uses for this have been found that cannot be better accomplished in other ways. This can, however, cause partial replies (not marked "truncated") from a caching server, where the TTLs for some but not all the RRs in the RRSet have expired. Consequently the use of differing TTLs in an RRSet is hereby deprecated, the TTLs of all RRs in an RRSet must be the same. Should a client receive a response containing RRs from an RRSet with differing TTLs, it should treat this as an error. If the RRSet concerned is from a non-authoritative source for this data, the client should simply ignore the RRSet, and if the values were required, seek to acquire them from an authoritative source. Clients that are configured to send all queries to one, or more, particular servers should treat those servers as authoritative for this purpose. Should an authoritative source send such a malformed RRSet, theElz & Bush Standards Track [Page 4]RFC 2181 Clarifications to the DNS Specification July 1997 client should treat the RRs for all purposes as if all TTLs in the RRSet had been set to the value of the lowest TTL in the RRSet. In no case may a server send an RRSet with TTLs not all equal.5.3. DNSSEC Special Cases Two of the record types added by DNS Security (DNSSEC) [RFC2065] require special attention when considering the formation of Resource Record Sets. Those are the SIG and NXT records. It should be noted that DNS Security is still very new, and there is, as yet, little experience with it. Readers should be prepared for the information related to DNSSEC contained in this document to become outdated as the DNS Security specification matures.5.3.1. SIG records and RRSets A SIG record provides signature (validation) data for another RRSet in the DNS. Where a zone has been signed, every RRSet in the zone will have had a SIG record associated with it. The data type of the RRSet is included in the data of the SIG RR, to indicate with which particular RRSet this SIG record is associated. Were the rules above applied, whenever a SIG record was included with a response to validate that response, the SIG records for all other RRSets associated with the appropriate node would also need to be included. In some cases, this could be a very large number of records, not helped by their being rather large RRs. Thus, it is specifically permitted for the authority section to contain only those SIG RRs with the "type covered" field equal to the type field of an answer being returned. However, where SIG records are being returned in the answer section, in response to a query for SIG records, or a query for all records associated with a name (type=ANY) the entire SIG RRSet must be included, as for any other RR type. Servers that receive responses containing SIG records in the authority section, or (probably incorrectly) as additional data, must understand that the entire RRSet has almost certainly not been included. Thus, they must not cache that SIG record in a way that would permit it to be returned should a query for SIG records be received at that server. RFC2065 actually requires that SIG queries be directed only to authoritative servers to avoid the problems that could be caused here, and while servers exist that do not understand the special properties of SIG records, this will remain necessary. However, careful design of SIG record processing in new implementations should permit this restriction to be relaxed in the future, so resolvers do not need to treat SIG record queries specially.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -