📄 m_decosf1.c
字号:
/* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. */#ifdef DEBUG /* * Emit debug info about all processes before selection. */ fprintf(stderr, "pid = %d ruid = %d comm = %s p_mach_state = %d p_stat = %d p_flag = 0x%x\n", pp->p_pid, pp->p_ruid, p_i[k].pi_comm, pp->p_mach_state, p_i[k].pi_status, pp->p_flag);#endif if (pp->p_mach_state != 0) { total_procs++; process_states[pp->p_mach_state]++; if ((pp->p_mach_state != 8) && (show_idle || (pp->p_mach_pct_cpu != 0) || (pp->p_mach_state == 1)) && (!show_uid || pp->p_ruid == (uid_t)sel->uid)) { *prefp++ = pp; active_procs++; } } } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) { qsort((char *)pref, active_procs, sizeof(struct osf1_top_proc *), compare); } /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return((caddr_t)&handle);}char fmt[128]; /* static area where result is built */char *format_next_process(handle, get_userid)caddr_t handle;char *(*get_userid)();{ register struct osf1_top_proc *pp; register long cputime; register double pct; struct user u; struct handle *hp; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's user struct and set cputime */ if (table(TBL_UAREA,pp->p_pid,&u,1,sizeof(struct user))<0) { /* whoops, it must have died between the read of the proc area * and now. Oh well, lets just dump some meaningless thing out * to keep the rest of the program happy */ sprintf(fmt, Proc_format, pp->p_pid, (*get_userid)(pp->p_ruid), 0, 0, "", "", "dead", "", 0.0, "<dead>"); return(fmt); } /* set u_comm for system processes */ if (u.u_comm[0] == '\0') { if (pp->p_pid == 0) { (void) strcpy(u.u_comm, "[idle]"); } else if (pp->p_pid == 2) { (void) strcpy(u.u_comm, "[execpt.hndlr]"); } } /* Check if process is in core */ if (!(pp->p_flag & SLOAD)) { /* * Print swapped processes as <pname> */ char buf[sizeof(u.u_comm)]; (void) strncpy(buf, u.u_comm, sizeof(u.u_comm)); u.u_comm[0] = '<'; (void) strncpy(&u.u_comm[1], buf, sizeof(u.u_comm) - 2); u.u_comm[sizeof(u.u_comm) - 2] = '\0'; (void) strncat(u.u_comm, ">", sizeof(u.u_comm) - 1); u.u_comm[sizeof(u.u_comm) - 1] = '\0'; } cputime = u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec; /* calculate the base for cpu percentages */ pct = pctdouble(pp->p_mach_pct_cpu); /* format this entry */ sprintf(fmt, Proc_format, pp->p_pid, (*get_userid)(pp->p_ruid), pp->p_pri, pp->p_nice, format_k(pp->p_mach_virt_size/1024), format_k(pp->p_rssize/1000), state_abbrev[pp->p_mach_state], format_time(cputime), 100.0 * ((double)pp->p_mach_pct_cpu / 10000.0), printable(u.u_comm)); /* return the result */ return(fmt);}/* * getkval(offset, ptr, size, refstr) - get a value out of the kernel. * "offset" is the byte offset into the kernel for the desired value, * "ptr" points to a buffer into which the value is retrieved, * "size" is the size of the buffer (and the object to retrieve), * "refstr" is a reference string used when printing error meessages, * if "refstr" starts with a '!', then a failure on read will not * be fatal (this may seem like a silly way to do things, but I * really didn't want the overhead of another argument). * */getkval(offset, ptr, size, refstr)unsigned long offset;int *ptr;int size;char *refstr;{ if (lseek(kmem, (long)offset, L_SET) == -1) { if (*refstr == '!') refstr++; (void) fprintf(stderr, "%s: lseek to %s: %s\n", KMEM, refstr, strerror(errno)); quit(23); } if (read(kmem, (char *) ptr, size) == -1) { if (*refstr == '!') return(0); else { (void) fprintf(stderr, "%s: reading %s: %s\n", KMEM, refstr, strerror(errno)); quit(23); } } return(1);} /* comparison routines for qsort *//* * There are currently four possible comparison routines. main selects * one of these by indexing in to the array proc_compares. * * Possible keys are defined as macros below. Currently these keys are * defined: percent cpu, cpu ticks, process state, resident set size, * total virtual memory usage. The process states are ordered as follows * (from least to most important): WAIT, zomb, ???, halt, idle, sleep, * stop, run. The array declaration below maps a process state index into * a number that reflects this ordering. *//* First, the possible comparison keys. These are defined in such a way that they can be merely listed in the source code to define the actual desired ordering. */#define ORDERKEY_PCTCPU if (lresult = p2->p_mach_pct_cpu - p1->p_mach_pct_cpu,\ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)#define ORDERKEY_CPTICKS if ((result = p2->used_ticks - p1->used_ticks) == 0)#define ORDERKEY_STATE if ((result = sorted_state[p2->p_mach_state] - \ sorted_state[p1->p_mach_state]) == 0)#define ORDERKEY_PRIO if ((result = p2->p_pri - p1->p_pri) == 0)#define ORDERKEY_RSSIZE if ((result = p2->p_rssize - p1->p_rssize) == 0)#define ORDERKEY_MEM if ((result = p2->p_mach_virt_size - p1->p_mach_virt_size) == 0)/* Now the array that maps process state to a weight */static unsigned char sorted_state[] ={ 0, /*""*/ 8, /*"run"*/ 1, /*"WAIT"*/ 6, /*"sleep"*/ 5, /*"idle"*/ 7, /*"stop"*/ 4, /*"halt"*/ 3, /*"???"*/ 2, /*"zomb"*/}; /* compare_cpu - the comparison function for sorting by cpu percentage */compare_cpu(pp1, pp2)struct osf1_top_proc **pp1;struct osf1_top_proc **pp2;{ register struct osf1_top_proc *p1; register struct osf1_top_proc *p2; register long result; register pctcpu lresult; /* remove one level of indirection */ p1 = *pp1; p2 = *pp2; ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result);}/* compare_size - the comparison function for sorting by total memory usage */compare_size(pp1, pp2)struct osf1_top_proc **pp1;struct osf1_top_proc **pp2;{ register struct osf1_top_proc *p1; register struct osf1_top_proc *p2; register long result; register pctcpu lresult; /* remove one level of indirection */ p1 = *pp1; p2 = *pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return(result);}/* compare_res - the comparison function for sorting by resident set size */compare_res(pp1, pp2)struct osf1_top_proc **pp1;struct osf1_top_proc **pp2;{ register struct osf1_top_proc *p1; register struct osf1_top_proc *p2; register long result; register pctcpu lresult; /* remove one level of indirection */ p1 = *pp1; p2 = *pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return(result);}/* compare_time - the comparison function for sorting by total cpu time */compare_time(pp1, pp2)struct osf1_top_proc **pp1;struct osf1_top_proc **pp2;{ register struct osf1_top_proc *p1; register struct osf1_top_proc *p2; register long result; register pctcpu lresult; /* remove one level of indirection */ p1 = *pp1; p2 = *pp2; ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result);}/* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */int proc_owner(pid)int pid;{ register int cnt; register struct osf1_top_proc **prefp; register struct osf1_top_proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { if ((pp = *prefp++)->p_pid == (pid_t)pid) { return((int)pp->p_ruid); } } return(-1);}/* * We use the Mach interface, as well as the table(UAREA,,,) call to * get some more information, then put it into unused fields in our * copy of the proc structure, to make it faster and easier to get at * later. */void do_threads_calculations(thisproc)struct osf1_top_proc *thisproc; { int j; task_t thistask; task_basic_info_data_t taskinfo; unsigned int taskinfo_l; thread_array_t threadarr; unsigned int threadarr_l; thread_basic_info_t threadinfo; thread_basic_info_data_t threadinfodata; unsigned int threadinfo_l; int task_tot_cpu=0; /* total cpu usage of threads in a task */ struct user u; thisproc->p_pri=0; thisproc->p_rssize=0; thisproc->p_mach_virt_size=0; thisproc->p_mach_state=0; thisproc->p_mach_pct_cpu=0; if(task_by_unix_pid(task_self(), thisproc->p_pid, &thistask) != KERN_SUCCESS){ thisproc->p_mach_state=8; /* (zombie) */ } else { taskinfo_l=TASK_BASIC_INFO_COUNT; if(task_info(thistask, TASK_BASIC_INFO, (task_info_t) &taskinfo, &taskinfo_l) != KERN_SUCCESS) { thisproc->p_mach_state=8; /* (zombie) */ } else { int minim_state=99,mcurp=1000,mbasp=1000,mslpt=999; thisproc->p_rssize=taskinfo.resident_size; thisproc->p_mach_virt_size=taskinfo.virtual_size; (void) task_threads(thistask, &threadarr, &threadarr_l); threadinfo= &threadinfodata; for(j=0; j < threadarr_l; j++) { threadinfo_l=THREAD_BASIC_INFO_COUNT; if(thread_info(threadarr[j],THREAD_BASIC_INFO, (thread_info_t) threadinfo, &threadinfo_l) == KERN_SUCCESS) { task_tot_cpu += threadinfo->cpu_usage; if(minim_state>threadinfo->run_state) minim_state=threadinfo->run_state; if(mcurp>threadinfo->cur_priority) mcurp=threadinfo->cur_priority; if(mbasp>threadinfo->base_priority) mbasp=threadinfo->base_priority; if(mslpt>threadinfo->sleep_time) mslpt=threadinfo->sleep_time; } } switch (minim_state) { case TH_STATE_RUNNING: thisproc->p_mach_state=1; break; case TH_STATE_UNINTERRUPTIBLE: thisproc->p_mach_state=2; break; case TH_STATE_WAITING: thisproc->p_mach_state=(threadinfo->sleep_time > 20) ? 4 : 3; break; case TH_STATE_STOPPED: thisproc->p_mach_state=5; break; case TH_STATE_HALTED: thisproc->p_mach_state=6; break; default: thisproc->p_mach_state=7; break; } thisproc->p_pri=mcurp; thisproc->p_mach_pct_cpu=(fixpt_t)(task_tot_cpu*10); vm_deallocate(task_self(),(vm_address_t)threadarr,threadarr_l); } } if (table(TBL_UAREA,thisproc->p_pid,&u,1,sizeof(struct user))>=0) { thisproc->used_ticks=(u.u_ru.ru_utime.tv_sec + u.u_ru.ru_stime.tv_sec); thisproc->process_size=u.u_tsize + u.u_dsize + u.u_ssize; }}/* The reason for this function is that the system call will let * someone lower their own processes priority (because top is setuid :-( * Yes, using syscall() is a hack, if you can come up with something * better, then I'd be thrilled to hear it. I'm not holding my breath, * though. * Anthony. */int setpriority(int dummy, int procnum, int niceval){ int uid, curprio; uid=getuid(); if ( (curprio=getpriority(PRIO_PROCESS,procnum) ) == -1) { return(-1); /* errno goes back to renice_process() */ } /* check for not-root - if so, dont allow users to decrease priority */ else if ( uid && (niceval<curprio) ) { errno=EACCES; return(-1); } return(syscall(SYS_setpriority,PRIO_PROCESS,procnum,niceval));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -