⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 8139too.c

📁 8139driver_in)linux2.4.x
💻 C
📖 第 1 页 / 共 5 页
字号:
		tp->chipset,		rtl_chip_info[tp->chipset].name);	DPRINTK ("EXIT, returning 0\n");	*ioaddr_out = ioaddr;	*dev_out = dev;	return 0;err_out_iounmap:	assert (ioaddr > 0);#ifndef USE_IO_OPS	iounmap (ioaddr);err_out_free_res:#endif /* !USE_IO_OPS */	pci_release_regions (pdev);err_out:	unregister_netdev (dev);	kfree (dev);	DPRINTK ("EXIT, returning %d\n", rc);	return rc;}static int __devinit rtl8139_init_one (struct pci_dev *pdev,				       const struct pci_device_id *ent){	struct net_device *dev = NULL;	struct rtl8139_private *tp;	int i, addr_len, option;	void *ioaddr = NULL;	static int board_idx = -1;	static int printed_version;	u8 tmp;		DPRINTK ("ENTER\n");	assert (pdev != NULL);	assert (ent != NULL);	board_idx++;	if (!printed_version) {		printk (KERN_INFO RTL8139_DRIVER_NAME " loaded\n");		printed_version = 1;	}	i = rtl8139_init_board (pdev, &dev, &ioaddr);	if (i < 0) {		DPRINTK ("EXIT, returning %d\n", i);		return i;	}	tp = dev->priv;	assert (ioaddr != NULL);	assert (dev != NULL);	assert (tp != NULL);	addr_len = read_eeprom (ioaddr, 0, 8) == 0x8129 ? 8 : 6;	for (i = 0; i < 3; i++)		((u16 *) (dev->dev_addr))[i] =		    le16_to_cpu (read_eeprom (ioaddr, i + 7, addr_len));	/* The Rtl8139-specific entries in the device structure. */	if( rtl_chip_info[tp->chipset].name == "RTL-8139CP" ){		dev->open = rtl8139CP_open;		dev->hard_start_xmit = rtl8139CP_start_xmit;		dev->stop = rtl8139CP_close;		dev->tx_timeout = rtl8139CP_tx_timeout;				dev->features |= NETIF_F_IP_CSUM;	/* Can checksum only TCP/UDP over IPv4. */		printk (KERN_DEBUG "%s: Identified 8139CP chip type '%s'. Support TCP/UDP checksumOffload\n",dev->name,rtl_chip_info[tp->chipset].name);	}	else{		dev->open = rtl8139_open;		dev->hard_start_xmit = rtl8139_start_xmit;		dev->stop = rtl8139_close;		dev->tx_timeout = rtl8139_tx_timeout;		printk (KERN_DEBUG "%s:  Identified 8139CP chip type '%s'\n", dev->name, rtl_chip_info[tp->chipset].name);	}	dev->get_stats = rtl8139_get_stats;	dev->set_multicast_list = rtl8139_set_rx_mode;	dev->do_ioctl = mii_ioctl;	dev->watchdog_timeo = TX_TIMEOUT;	dev->irq = pdev->irq;	dev->base_addr = (unsigned long) ioaddr;	/* dev->priv/tp zeroed and aligned in init_etherdev */	tp = dev->priv;	/* note: tp->chipset set in rtl8139_init_board */	tp->drv_flags = board_info[ent->driver_data].hw_flags;	tp->pci_dev = pdev;	tp->mmio_addr = ioaddr;	spin_lock_init (&tp->lock);	init_waitqueue_head (&tp->thr_wait);#if LINUX_VERSION_CODE < 0x20407	init_MUTEX_LOCKED (&tp->thr_exited);#else	init_completion (&tp->thr_exited);#endif	pdev->driver_data = dev;	printk (KERN_INFO "%s: %s at 0x%lx, "		"%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, "		"IRQ %d\n",		dev->name,		board_info[ent->driver_data].name,		dev->base_addr,		dev->dev_addr[0], dev->dev_addr[1],		dev->dev_addr[2], dev->dev_addr[3],		dev->dev_addr[4], dev->dev_addr[5],		dev->irq);//	dev->tx_queue_len=500;	/* Find the connected MII xcvrs.	   Doing this in open() would allow detecting external xcvrs later, but	   takes too much time. */	if (tp->drv_flags & HAS_MII_XCVR) {		int phy, phy_idx = 0;		for (phy = 0; phy < 32 && phy_idx < sizeof(tp->phys); phy++) {			int mii_status = mdio_read(dev, phy, 1);			if (mii_status != 0xffff  &&  mii_status != 0x0000) {				tp->phys[phy_idx++] = phy;				tp->advertising = mdio_read(dev, phy, 4);				printk(KERN_INFO "%s: MII transceiver %d status 0x%4.4x "					   "advertising %4.4x.\n",					   dev->name, phy, mii_status, tp->advertising);			}		}		if (phy_idx == 0) {			printk(KERN_INFO "%s: No MII transceivers found!  Assuming SYM "				   "transceiver.\n",				   dev->name);			tp->phys[0] = 32;		}	} else		tp->phys[0] = 32;	/* Put the chip into low-power mode. */	RTL_W8_F (Cfg9346, Cfg9346_Unlock);	tmp = RTL_R8 (Config1) & Config1Clear;	tmp |= (tp->chipset == CH_8139B) ? 3 : 1; /* Enable PM/VPD */	RTL_W8_F (Config1, tmp);	RTL_W8_F (HltClk, 'H');	/* 'R' would leave the clock running. */	/* The lower four bits are the media type. */	option = (board_idx >= MAX_UNITS) ? 0 : media[board_idx];	tp->AutoNegoAbility = option&0xF;	if (option > 0) {		tp->full_duplex = (option & 0x210) ? 1 : 0;		tp->default_port = option & 0xFF;		if (tp->default_port)			tp->medialock = 1;	}	if (board_idx < MAX_UNITS  &&  full_duplex[board_idx] > 0)		tp->full_duplex = full_duplex[board_idx];	if (tp->full_duplex) {		printk(KERN_INFO "%s: Media type forced to Full Duplex.\n", dev->name);		/* Changing the MII-advertised media because might prevent		   re-connection. */		tp->duplex_lock = 1;	}	if (tp->default_port) {		printk(KERN_INFO "%s: Forcing %dMbs %s-duplex operation.\n", dev->name,			   (option & 0x0C ? 100 : 10),			   (option & 0x0A ? "full" : "half"));		mdio_write(dev, tp->phys[0], 0,				   ((option & 0x20) ? 0x2000 : 0) | 	/* 100mbps? */				   ((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */	}	DPRINTK ("EXIT - returning 0\n");	return 0;}static void __devexit rtl8139_remove_one (struct pci_dev *pdev){	struct net_device *dev = pdev->driver_data;	struct rtl8139_private *np;	DPRINTK ("ENTER\n");	assert (dev != NULL);	np = (struct rtl8139_private *) (dev->priv);	assert (np != NULL);	unregister_netdev (dev);#ifndef USE_IO_OPS	iounmap (np->mmio_addr);#endif /* !USE_IO_OPS */	pci_release_regions (pdev);#ifndef RTL8139_NDEBUG	/* poison memory before freeing */	memset (dev, 0xBC,		sizeof (struct net_device) +		sizeof (struct rtl8139_private));#endif /* RTL8139_NDEBUG */	kfree (dev);	pdev->driver_data = NULL;	DPRINTK ("EXIT\n");}/* Serial EEPROM section. *//*  EEPROM_Ctrl bits. */#define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */#define EE_CS			0x08	/* EEPROM chip select. */#define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */#define EE_WRITE_0		0x00#define EE_WRITE_1		0x02#define EE_DATA_READ	0x01	/* EEPROM chip data out. */#define EE_ENB			(0x80 | EE_CS)/* Delay between EEPROM clock transitions.   No extra delay is needed with 33Mhz PCI, but 66Mhz may change this. */#define eeprom_delay()	readl(ee_addr)/* The EEPROM commands include the alway-set leading bit. */#define EE_WRITE_CMD	(5)#define EE_READ_CMD		(6)#define EE_ERASE_CMD	(7)static int __devinit read_eeprom (void *ioaddr, int location, int addr_len){	int i;	unsigned retval = 0;	void *ee_addr = ioaddr + Cfg9346;	int read_cmd = location | (EE_READ_CMD << addr_len);	DPRINTK ("ENTER\n");	writeb (EE_ENB & ~EE_CS, ee_addr);	writeb (EE_ENB, ee_addr);	eeprom_delay ();	/* Shift the read command bits out. */	for (i = 4 + addr_len; i >= 0; i--) {		int dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;		writeb (EE_ENB | dataval, ee_addr);		eeprom_delay ();		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);		eeprom_delay ();	}	writeb (EE_ENB, ee_addr);	eeprom_delay ();	for (i = 16; i > 0; i--) {		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);		eeprom_delay ();		retval =		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :				     0);		writeb (EE_ENB, ee_addr);		eeprom_delay ();	}	/* Terminate the EEPROM access. */	writeb (~EE_CS, ee_addr);	eeprom_delay ();	DPRINTK ("EXIT - returning %d\n", retval);	return retval;}/* MII serial management: mostly bogus for now. *//* Read and write the MII management registers using software-generated   serial MDIO protocol.   The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually   met by back-to-back PCI I/O cycles, but we insert a delay to avoid   "overclocking" issues. */#define MDIO_DIR		0x80#define MDIO_DATA_OUT	0x04#define MDIO_DATA_IN	0x02#define MDIO_CLK		0x01#define MDIO_WRITE0 (MDIO_DIR)#define MDIO_WRITE1 (MDIO_DIR | MDIO_DATA_OUT)#define mdio_delay(mdio_addr)	readb(mdio_addr)static char mii_2_8139_map[8] = {	BasicModeCtrl,	BasicModeStatus,	0,	0,	NWayAdvert,	NWayLPAR,	NWayExpansion,	0};/* Syncronize the MII management interface by shifting 32 one bits out. */static void mdio_sync (void *mdio_addr){	int i;	DPRINTK ("ENTER\n");	for (i = 32; i >= 0; i--) {		writeb (MDIO_WRITE1, mdio_addr);		mdio_delay (mdio_addr);		writeb (MDIO_WRITE1 | MDIO_CLK, mdio_addr);		mdio_delay (mdio_addr);	}	DPRINTK ("EXIT\n");}static int mdio_read (struct net_device *dev, int phy_id, int location){	struct rtl8139_private *tp = dev->priv;	void *mdio_addr = tp->mmio_addr + Config4;	int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;	int retval = 0;	int i;	DPRINTK ("ENTER\n");	if (phy_id > 31) {	/* Really a 8139.  Use internal registers. */		DPRINTK ("EXIT after directly using 8139 internal regs\n");		return location < 8 && mii_2_8139_map[location] ?		    readw (tp->mmio_addr + mii_2_8139_map[location]) : 0;	}	mdio_sync (mdio_addr);	/* Shift the read command bits out. */	for (i = 15; i >= 0; i--) {		int dataval = (mii_cmd & (1 << i)) ? MDIO_DATA_OUT : 0;		writeb (MDIO_DIR | dataval, mdio_addr);		mdio_delay (mdio_addr);		writeb (MDIO_DIR | dataval | MDIO_CLK, mdio_addr);		mdio_delay (mdio_addr);	}	/* Read the two transition, 16 data, and wire-idle bits. */	for (i = 19; i > 0; i--) {		writeb (0, mdio_addr);		mdio_delay (mdio_addr);		retval = (retval << 1) | ((readb (mdio_addr) & MDIO_DATA_IN) ? 1 : 0);		writeb (MDIO_CLK, mdio_addr);		mdio_delay (mdio_addr);	}	DPRINTK ("EXIT, returning %d\n", (retval >> 1) & 0xffff);	return (retval >> 1) & 0xffff;}static void mdio_write (struct net_device *dev, int phy_id, int location,			int value){	struct rtl8139_private *tp = dev->priv;	void *mdio_addr = tp->mmio_addr + Config4;	int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location << 18) | value;	int i;	DPRINTK ("ENTER\n");	if (phy_id > 31) {	/* Really a 8139.  Use internal registers. */		void *ioaddr = tp->mmio_addr;		if (location == 0) {			RTL_W8_F (Cfg9346, Cfg9346_Unlock);			//////////////////////////////////////////////////////////////			switch(tp->AutoNegoAbility){			case 1: RTL_W16 (NWayAdvert, AutoNegoAbility10half); break;			case 2: RTL_W16 (NWayAdvert, AutoNegoAbility10full); break;			case 4: RTL_W16 (NWayAdvert, AutoNegoAbility100half); break;			case 8: RTL_W16 (NWayAdvert, AutoNegoAbility100full); break;			default: break;			}			RTL_W16_F (BasicModeCtrl, AutoNegotiationEnable|AutoNegotiationRestart);			////////////////////////////////////////////////////////////////			RTL_W16_F (BasicModeCtrl, value);			RTL_W8_F (Cfg9346, Cfg9346_Lock);		} else if (location < 8 && mii_2_8139_map[location])			RTL_W16_F (mii_2_8139_map[location], value);		return;	}	mdio_sync (mdio_addr);	/* Shift the command bits out. */	for (i = 31; i >= 0; i--) {		int dataval =		    (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;		writeb (dataval, mdio_addr);		mdio_delay (mdio_addr);		writeb (dataval | MDIO_CLK, mdio_addr);		mdio_delay (mdio_addr);	}	/* Clear out extra bits. */	for (i = 2; i > 0; i--) {		writeb (0, mdio_addr);		mdio_delay (mdio_addr);		writeb (MDIO_CLK, mdio_addr);		mdio_delay (mdio_addr);	}	return;}static int rtl8139_open (struct net_device *dev){	struct rtl8139_private *tp = dev->priv;	int retval;#ifdef RTL8139_DEBUG	void *ioaddr = tp->mmio_addr;#endif	DPRINTK ("ENTER\n");	retval = request_irq (dev->irq, rtl8139_interrupt, SA_SHIRQ, dev->name, dev);	if (retval) {		DPRINTK ("EXIT, returning %d\n", retval);		return retval;	}	tp->tx_bufs = pci_alloc_consistent(tp->pci_dev, TX_BUF_TOT_LEN,					   &tp->tx_bufs_dma);	tp->rx_ring = pci_alloc_consistent(tp->pci_dev, RX_BUF_TOT_LEN,					   &tp->rx_ring_dma);	if (tp->tx_bufs == NULL || tp->rx_ring == NULL) {		free_irq(dev->irq, dev);		if (tp->tx_bufs)			pci_free_consistent(tp->pci_dev, TX_BUF_TOT_LEN,					    tp->tx_bufs, tp->tx_bufs_dma);		if (tp->rx_ring)			pci_free_consistent(tp->pci_dev, RX_BUF_TOT_LEN,					    tp->rx_ring, tp->rx_ring_dma);		DPRINTK ("EXIT, returning -ENOMEM\n");		return -ENOMEM;	}	tp->full_duplex = tp->duplex_lock;	tp->tx_flag = (TX_FIFO_THRESH << 11) & 0x003f0000;	tp->twistie = 1;	rtl8139_init_ring (dev);	rtl8139_hw_start (dev);	DPRINTK ("%s: rtl8139_open() ioaddr %#lx IRQ %d"			" GP Pins %2.2x %s-duplex.\n",			dev->name, pci_resource_start (tp->pci_dev, 1),			dev->irq, RTL_R8 (MediaStatus),			tp->full_duplex ? "full" : "half");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -