📄 8139too.c
字号:
tp->chipset, rtl_chip_info[tp->chipset].name); DPRINTK ("EXIT, returning 0\n"); *ioaddr_out = ioaddr; *dev_out = dev; return 0;err_out_iounmap: assert (ioaddr > 0);#ifndef USE_IO_OPS iounmap (ioaddr);err_out_free_res:#endif /* !USE_IO_OPS */ pci_release_regions (pdev);err_out: unregister_netdev (dev); kfree (dev); DPRINTK ("EXIT, returning %d\n", rc); return rc;}static int __devinit rtl8139_init_one (struct pci_dev *pdev, const struct pci_device_id *ent){ struct net_device *dev = NULL; struct rtl8139_private *tp; int i, addr_len, option; void *ioaddr = NULL; static int board_idx = -1; static int printed_version; u8 tmp; DPRINTK ("ENTER\n"); assert (pdev != NULL); assert (ent != NULL); board_idx++; if (!printed_version) { printk (KERN_INFO RTL8139_DRIVER_NAME " loaded\n"); printed_version = 1; } i = rtl8139_init_board (pdev, &dev, &ioaddr); if (i < 0) { DPRINTK ("EXIT, returning %d\n", i); return i; } tp = dev->priv; assert (ioaddr != NULL); assert (dev != NULL); assert (tp != NULL); addr_len = read_eeprom (ioaddr, 0, 8) == 0x8129 ? 8 : 6; for (i = 0; i < 3; i++) ((u16 *) (dev->dev_addr))[i] = le16_to_cpu (read_eeprom (ioaddr, i + 7, addr_len)); /* The Rtl8139-specific entries in the device structure. */ if( rtl_chip_info[tp->chipset].name == "RTL-8139CP" ){ dev->open = rtl8139CP_open; dev->hard_start_xmit = rtl8139CP_start_xmit; dev->stop = rtl8139CP_close; dev->tx_timeout = rtl8139CP_tx_timeout; dev->features |= NETIF_F_IP_CSUM; /* Can checksum only TCP/UDP over IPv4. */ printk (KERN_DEBUG "%s: Identified 8139CP chip type '%s'. Support TCP/UDP checksumOffload\n",dev->name,rtl_chip_info[tp->chipset].name); } else{ dev->open = rtl8139_open; dev->hard_start_xmit = rtl8139_start_xmit; dev->stop = rtl8139_close; dev->tx_timeout = rtl8139_tx_timeout; printk (KERN_DEBUG "%s: Identified 8139CP chip type '%s'\n", dev->name, rtl_chip_info[tp->chipset].name); } dev->get_stats = rtl8139_get_stats; dev->set_multicast_list = rtl8139_set_rx_mode; dev->do_ioctl = mii_ioctl; dev->watchdog_timeo = TX_TIMEOUT; dev->irq = pdev->irq; dev->base_addr = (unsigned long) ioaddr; /* dev->priv/tp zeroed and aligned in init_etherdev */ tp = dev->priv; /* note: tp->chipset set in rtl8139_init_board */ tp->drv_flags = board_info[ent->driver_data].hw_flags; tp->pci_dev = pdev; tp->mmio_addr = ioaddr; spin_lock_init (&tp->lock); init_waitqueue_head (&tp->thr_wait);#if LINUX_VERSION_CODE < 0x20407 init_MUTEX_LOCKED (&tp->thr_exited);#else init_completion (&tp->thr_exited);#endif pdev->driver_data = dev; printk (KERN_INFO "%s: %s at 0x%lx, " "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, " "IRQ %d\n", dev->name, board_info[ent->driver_data].name, dev->base_addr, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq);// dev->tx_queue_len=500; /* Find the connected MII xcvrs. Doing this in open() would allow detecting external xcvrs later, but takes too much time. */ if (tp->drv_flags & HAS_MII_XCVR) { int phy, phy_idx = 0; for (phy = 0; phy < 32 && phy_idx < sizeof(tp->phys); phy++) { int mii_status = mdio_read(dev, phy, 1); if (mii_status != 0xffff && mii_status != 0x0000) { tp->phys[phy_idx++] = phy; tp->advertising = mdio_read(dev, phy, 4); printk(KERN_INFO "%s: MII transceiver %d status 0x%4.4x " "advertising %4.4x.\n", dev->name, phy, mii_status, tp->advertising); } } if (phy_idx == 0) { printk(KERN_INFO "%s: No MII transceivers found! Assuming SYM " "transceiver.\n", dev->name); tp->phys[0] = 32; } } else tp->phys[0] = 32; /* Put the chip into low-power mode. */ RTL_W8_F (Cfg9346, Cfg9346_Unlock); tmp = RTL_R8 (Config1) & Config1Clear; tmp |= (tp->chipset == CH_8139B) ? 3 : 1; /* Enable PM/VPD */ RTL_W8_F (Config1, tmp); RTL_W8_F (HltClk, 'H'); /* 'R' would leave the clock running. */ /* The lower four bits are the media type. */ option = (board_idx >= MAX_UNITS) ? 0 : media[board_idx]; tp->AutoNegoAbility = option&0xF; if (option > 0) { tp->full_duplex = (option & 0x210) ? 1 : 0; tp->default_port = option & 0xFF; if (tp->default_port) tp->medialock = 1; } if (board_idx < MAX_UNITS && full_duplex[board_idx] > 0) tp->full_duplex = full_duplex[board_idx]; if (tp->full_duplex) { printk(KERN_INFO "%s: Media type forced to Full Duplex.\n", dev->name); /* Changing the MII-advertised media because might prevent re-connection. */ tp->duplex_lock = 1; } if (tp->default_port) { printk(KERN_INFO "%s: Forcing %dMbs %s-duplex operation.\n", dev->name, (option & 0x0C ? 100 : 10), (option & 0x0A ? "full" : "half")); mdio_write(dev, tp->phys[0], 0, ((option & 0x20) ? 0x2000 : 0) | /* 100mbps? */ ((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */ } DPRINTK ("EXIT - returning 0\n"); return 0;}static void __devexit rtl8139_remove_one (struct pci_dev *pdev){ struct net_device *dev = pdev->driver_data; struct rtl8139_private *np; DPRINTK ("ENTER\n"); assert (dev != NULL); np = (struct rtl8139_private *) (dev->priv); assert (np != NULL); unregister_netdev (dev);#ifndef USE_IO_OPS iounmap (np->mmio_addr);#endif /* !USE_IO_OPS */ pci_release_regions (pdev);#ifndef RTL8139_NDEBUG /* poison memory before freeing */ memset (dev, 0xBC, sizeof (struct net_device) + sizeof (struct rtl8139_private));#endif /* RTL8139_NDEBUG */ kfree (dev); pdev->driver_data = NULL; DPRINTK ("EXIT\n");}/* Serial EEPROM section. *//* EEPROM_Ctrl bits. */#define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */#define EE_CS 0x08 /* EEPROM chip select. */#define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */#define EE_WRITE_0 0x00#define EE_WRITE_1 0x02#define EE_DATA_READ 0x01 /* EEPROM chip data out. */#define EE_ENB (0x80 | EE_CS)/* Delay between EEPROM clock transitions. No extra delay is needed with 33Mhz PCI, but 66Mhz may change this. */#define eeprom_delay() readl(ee_addr)/* The EEPROM commands include the alway-set leading bit. */#define EE_WRITE_CMD (5)#define EE_READ_CMD (6)#define EE_ERASE_CMD (7)static int __devinit read_eeprom (void *ioaddr, int location, int addr_len){ int i; unsigned retval = 0; void *ee_addr = ioaddr + Cfg9346; int read_cmd = location | (EE_READ_CMD << addr_len); DPRINTK ("ENTER\n"); writeb (EE_ENB & ~EE_CS, ee_addr); writeb (EE_ENB, ee_addr); eeprom_delay (); /* Shift the read command bits out. */ for (i = 4 + addr_len; i >= 0; i--) { int dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; writeb (EE_ENB | dataval, ee_addr); eeprom_delay (); writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); eeprom_delay (); } writeb (EE_ENB, ee_addr); eeprom_delay (); for (i = 16; i > 0; i--) { writeb (EE_ENB | EE_SHIFT_CLK, ee_addr); eeprom_delay (); retval = (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 : 0); writeb (EE_ENB, ee_addr); eeprom_delay (); } /* Terminate the EEPROM access. */ writeb (~EE_CS, ee_addr); eeprom_delay (); DPRINTK ("EXIT - returning %d\n", retval); return retval;}/* MII serial management: mostly bogus for now. *//* Read and write the MII management registers using software-generated serial MDIO protocol. The maximum data clock rate is 2.5 Mhz. The minimum timing is usually met by back-to-back PCI I/O cycles, but we insert a delay to avoid "overclocking" issues. */#define MDIO_DIR 0x80#define MDIO_DATA_OUT 0x04#define MDIO_DATA_IN 0x02#define MDIO_CLK 0x01#define MDIO_WRITE0 (MDIO_DIR)#define MDIO_WRITE1 (MDIO_DIR | MDIO_DATA_OUT)#define mdio_delay(mdio_addr) readb(mdio_addr)static char mii_2_8139_map[8] = { BasicModeCtrl, BasicModeStatus, 0, 0, NWayAdvert, NWayLPAR, NWayExpansion, 0};/* Syncronize the MII management interface by shifting 32 one bits out. */static void mdio_sync (void *mdio_addr){ int i; DPRINTK ("ENTER\n"); for (i = 32; i >= 0; i--) { writeb (MDIO_WRITE1, mdio_addr); mdio_delay (mdio_addr); writeb (MDIO_WRITE1 | MDIO_CLK, mdio_addr); mdio_delay (mdio_addr); } DPRINTK ("EXIT\n");}static int mdio_read (struct net_device *dev, int phy_id, int location){ struct rtl8139_private *tp = dev->priv; void *mdio_addr = tp->mmio_addr + Config4; int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location; int retval = 0; int i; DPRINTK ("ENTER\n"); if (phy_id > 31) { /* Really a 8139. Use internal registers. */ DPRINTK ("EXIT after directly using 8139 internal regs\n"); return location < 8 && mii_2_8139_map[location] ? readw (tp->mmio_addr + mii_2_8139_map[location]) : 0; } mdio_sync (mdio_addr); /* Shift the read command bits out. */ for (i = 15; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_DATA_OUT : 0; writeb (MDIO_DIR | dataval, mdio_addr); mdio_delay (mdio_addr); writeb (MDIO_DIR | dataval | MDIO_CLK, mdio_addr); mdio_delay (mdio_addr); } /* Read the two transition, 16 data, and wire-idle bits. */ for (i = 19; i > 0; i--) { writeb (0, mdio_addr); mdio_delay (mdio_addr); retval = (retval << 1) | ((readb (mdio_addr) & MDIO_DATA_IN) ? 1 : 0); writeb (MDIO_CLK, mdio_addr); mdio_delay (mdio_addr); } DPRINTK ("EXIT, returning %d\n", (retval >> 1) & 0xffff); return (retval >> 1) & 0xffff;}static void mdio_write (struct net_device *dev, int phy_id, int location, int value){ struct rtl8139_private *tp = dev->priv; void *mdio_addr = tp->mmio_addr + Config4; int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location << 18) | value; int i; DPRINTK ("ENTER\n"); if (phy_id > 31) { /* Really a 8139. Use internal registers. */ void *ioaddr = tp->mmio_addr; if (location == 0) { RTL_W8_F (Cfg9346, Cfg9346_Unlock); ////////////////////////////////////////////////////////////// switch(tp->AutoNegoAbility){ case 1: RTL_W16 (NWayAdvert, AutoNegoAbility10half); break; case 2: RTL_W16 (NWayAdvert, AutoNegoAbility10full); break; case 4: RTL_W16 (NWayAdvert, AutoNegoAbility100half); break; case 8: RTL_W16 (NWayAdvert, AutoNegoAbility100full); break; default: break; } RTL_W16_F (BasicModeCtrl, AutoNegotiationEnable|AutoNegotiationRestart); //////////////////////////////////////////////////////////////// RTL_W16_F (BasicModeCtrl, value); RTL_W8_F (Cfg9346, Cfg9346_Lock); } else if (location < 8 && mii_2_8139_map[location]) RTL_W16_F (mii_2_8139_map[location], value); return; } mdio_sync (mdio_addr); /* Shift the command bits out. */ for (i = 31; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; writeb (dataval, mdio_addr); mdio_delay (mdio_addr); writeb (dataval | MDIO_CLK, mdio_addr); mdio_delay (mdio_addr); } /* Clear out extra bits. */ for (i = 2; i > 0; i--) { writeb (0, mdio_addr); mdio_delay (mdio_addr); writeb (MDIO_CLK, mdio_addr); mdio_delay (mdio_addr); } return;}static int rtl8139_open (struct net_device *dev){ struct rtl8139_private *tp = dev->priv; int retval;#ifdef RTL8139_DEBUG void *ioaddr = tp->mmio_addr;#endif DPRINTK ("ENTER\n"); retval = request_irq (dev->irq, rtl8139_interrupt, SA_SHIRQ, dev->name, dev); if (retval) { DPRINTK ("EXIT, returning %d\n", retval); return retval; } tp->tx_bufs = pci_alloc_consistent(tp->pci_dev, TX_BUF_TOT_LEN, &tp->tx_bufs_dma); tp->rx_ring = pci_alloc_consistent(tp->pci_dev, RX_BUF_TOT_LEN, &tp->rx_ring_dma); if (tp->tx_bufs == NULL || tp->rx_ring == NULL) { free_irq(dev->irq, dev); if (tp->tx_bufs) pci_free_consistent(tp->pci_dev, TX_BUF_TOT_LEN, tp->tx_bufs, tp->tx_bufs_dma); if (tp->rx_ring) pci_free_consistent(tp->pci_dev, RX_BUF_TOT_LEN, tp->rx_ring, tp->rx_ring_dma); DPRINTK ("EXIT, returning -ENOMEM\n"); return -ENOMEM; } tp->full_duplex = tp->duplex_lock; tp->tx_flag = (TX_FIFO_THRESH << 11) & 0x003f0000; tp->twistie = 1; rtl8139_init_ring (dev); rtl8139_hw_start (dev); DPRINTK ("%s: rtl8139_open() ioaddr %#lx IRQ %d" " GP Pins %2.2x %s-duplex.\n", dev->name, pci_resource_start (tp->pci_dev, 1), dev->irq, RTL_R8 (MediaStatus), tp->full_duplex ? "full" : "half");
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -