⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 general.c

📁 占星术4.0源码
💻 C
📖 第 1 页 / 共 2 页
字号:
/*
** Astrolog (Version 4.00) File: general.c
**
** IMPORTANT NOTICE: the graphics database and chart display routines
** used in this program are Copyright (C) 1991-1993 by Walter D. Pullen
** (cruiser1@stein.u.washington.edu). Permission is granted to freely
** use and distribute these routines provided one doesn't sell,
** restrict, or profit from them in any way. Modification is allowed
** provided these notices remain with any altered or edited versions of
** the program.
**
** The main planetary calculation routines used in this program have
** been Copyrighted and the core of this program is basically a
** conversion to C of the routines created by James Neely as listed in
** Michael Erlewine's 'Manual of Computer Programming for Astrologers',
** available from Matrix Software. The copyright gives us permission to
** use the routines for personal use but not to sell them or profit from
** them in any way.
**
** The PostScript code within the core graphics routines are programmed
** and Copyright (C) 1992-1993 by Brian D. Willoughby
** (brianw@sounds.wa.com). Conditions are identical to those above.
**
** The extended accurate ephemeris databases and formulas are from the
** calculation routines in the program "Placalc" and are programmed and
** Copyright (C) 1989,1991,1993 by Astrodienst AG and Alois Treindl
** (alois@azur.ch). The use of that source code is subject to
** regulations made by Astrodienst Zurich, and the code is not in the
** public domain. This copyright notice must not be changed or removed
** by any user of this program.
**
** Initial programming 8/28,30, 9/10,13,16,20,23, 10/3,6,7, 11/7,10,21/1991.
** X Window graphics initially programmed 10/23-29/1991.
** PostScript graphics initially programmed 11/29-30/1992.
** Last code change made 12/31/1993.
*/

#include "astrolog.h"


/*
******************************************************************************
** General Functions.
******************************************************************************
*/

/* Swap two real floating point values. */

void SwapReal(d1, d2)
real *d1, *d2;
{
  real temp;

  temp = *d1; *d1 = *d2; *d2 = temp;
}


/* Return the length of a string. */

int StringLen(line)
char *line;
{
  int i;

  for (i = 0; *line++; i++)
    ;
  return i;
}


/* Return whether one string is greater than another. */

int StringCmp(s1, s2)
char *s1, *s2;
{
  while (*s1 && *s1 == *s2)
    s1++, s2++;
  return *s1 - *s2;
}


/* Determine the sign of a number: -1 if value negative, +1 if value */
/* positive, and 0 if it's zero.                                     */

real Sgn(d)
real d;
{
  return d == 0.0 ? 0.0 : SGN2(d);
}


/* Given an x and y coordinate, return the angle formed by a line from the */
/* origin to this coordinate. This is just converting from rectangular to  */
/* polar coordinates; however, we don't determine the radius here.         */

real Angle(x, y)
real x, y;
{
  real a;

  if (x != 0.0)
    a = ATAN(y/x);
  else
    a = Sgn(y)*PI/2.0;
  if (a < 0.0)
    a += PI;
  if (y < 0.0)
    a += PI;
  return a;
}


/* Modulus function for floating point values. The modulus value itself */
/* has been specified earlier: it is usually either 360.0 or PI/2.0.    */

real Mod(d)
real d;
{
  if (d > modulus)         /* In most cases, our value is only slightly */
    d -= modulus;          /* out of range, so we can test for it and   */
  else if (d < modulus)    /* avoid the more complicated arithmetic.    */
    d += modulus;
  if (d >= 0 && d < modulus)
    return d;
  return (d - floor(d/modulus)*modulus);
}


/*
******************************************************************************
** General Astrology Functions.
******************************************************************************
*/

/* A similar modulus function: convert an integer to value from 1..12. */

int Mod12(i)
int i;
{
  while (i > SIGNS)
    i -= SIGNS;
  while (i < 1)
    i += SIGNS;
  return i;
}


/* Convert an inputed fractional degrees/minutes value to a true decimal   */
/* degree quantity. For example, the user enters the decimal value "10.30" */
/* to mean 10 degrees and 30 minutes; this will return 10.5, i.e. 10       */
/* degrees and 30 minutes expressed as a floating point degree value.      */

real DecToDeg(d)
real d;
{
  return Sgn(d)*(floor(dabs(d))+FRACT(dabs(d))*100.0/60.0);
}


/* This is the inverse of the above function. Given a true decimal value */
/* for a zodiac degree, adjust it so the degrees are in the integer part */
/* and the minute expressed as hundredths, e.g. 10.5 degrees -> 10.30    */

real DegToDec(d)
real d;
{
  return Sgn(d)*(floor(dabs(d))+FRACT(dabs(d))*60.0/100.0);
}


/* Return the shortest distance between two degrees in the zodiac. This is  */
/* normally their difference, but we have to check if near the Aries point. */

real MinDistance(deg1, deg2)
real deg1, deg2;
{
  real i;

  i = dabs(deg1-deg2);
  return i < DEGHALF ? i : DEGREES - i;
}


/* This is just like the above routine, except the min distance value  */
/* returned will either be positive or negative based on whether the   */
/* second value is ahead or behind the first one in a circular zodiac. */

real MinDifference(deg1, deg2)
real deg1, deg2;
{
  real i;

  i = deg2 - deg1;
  if (dabs(i) < DEGHALF)
    return i;
  return Sgn(i)*(dabs(i) - DEGREES);
}


/* Return the degree of the midpoint between two zodiac positions, making */
/* sure we return the true midpoint closest to the positions in question. */

real Midpoint(deg1, deg2)
real deg1, deg2;
{
  real mid;

  mid = (deg1+deg2)/2.0;
  return MinDistance(deg1, mid) < DEGQUAD ? mid : Mod(mid+DEGHALF);
}


/* Given a planet and sign, determine whether: The planet rules the sign, */
/* the planet has its fall in the sign, the planet exalts in the sign, or */
/* is debilitated in the sign; and return an appropriate character.       */

char Dignify(body, sign)
int body, sign;
{
  if (body > U_HI)
    return ' ';
  if (ruler1[body] == sign || ruler2[body] == sign)
    return 'R';
  if (ruler1[body] == Mod12(sign+6) || ruler2[body] == Mod12(sign+6))
    return 'F';
  if (exalt[body] == sign)
    return 'e';
  if (exalt[body] == Mod12(sign+6))
    return 'd';
  return '-';
}


/* Determine the number of days in a particular month. The year is needed, */
/* too, because we have to check for leap years in the case of February.   */

int DayInMonth(month, year)
int month, year;
{
  return (month == 9 || month == 4 || month == 6 || month == 11 ? 30 :
    (month != 2 ? 31 : 28 +
    (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))));
}


/* Given an aspect and two objects making that aspect with each other,   */
/* return the maximum orb allowed for such an aspect. Normally this only */
/* depends on the aspect itself, but some objects require narrow orbs,   */
/* and some allow wider orbs, so check for these cases.                  */

real Orb(body1, body2, aspect)
int body1, body2, aspect;
{
  real orb, i;

  orb = aspectorb[aspect];
  i = body1 > BASE ? 2.0 : planetorb[body1];
  orb = MIN(orb, i);
  i = body2 > BASE ? 2.0 : planetorb[body2];
  orb = MIN(orb, i);
  if (body1 <= BASE)
    orb += planetadd[body1];
  if (body2 <= BASE)
    orb += planetadd[body2];
  return orb;
}


/*
******************************************************************************
** File IO Routines.
******************************************************************************
*/

/* Exit the program, and do any cleanup necessary. Note that if we had     */
/* a non-fatal error, and we are in the -Q loop mode, then we won't        */
/* actually terminate the program, but drop back to the command line loop. */

void Terminate(value)
int value;
{
  if (value == _FORCE) {
    AnsiColor(WHITE);
    fprintf(stdout, "\n%s terminated.\n", appname);
  }
  if (value == _ERROR && (operation & DASHQ) > 0)
    return;
  if (ansi)
    fprintf(S, "%c[0m", ESCAPE);    /* Get out of any Ansi color mode. */
  exit(abs(value));
}


/* Print a warning message given a string. This is called in non-fatal  */
/* cases where we return to normal execution after printing the string. */

void PrintWarning(string)
char *string;
{
  AnsiColor(RED);
  fprintf(stderr, "%s\n", string);
  AnsiColor(DEFAULT); 
}


/* Print an error message. This is called in more serious cases which halt */
/* running of the current chart sequence, which can terminate the program  */
/* but isn't a fatal error in that we can still fall back to the -Q loop.  */

void PrintError(string)
char *string;
{
  AnsiColor(RED);
  fprintf(stderr, "%s: %s\n", appname, string);
  Terminate(_ERROR);
  AnsiColor(DEFAULT); 
}


/* Simplification for a commonly printed error message. */

void TooFew(option)
char *option;
{
  char string[STRING];

  sprintf(string, "Too few options to switch -%s", option);
  PrintError(string);
}


/* Another simplification for a commonly printed error message. */

void BadVal(option, value)
char *option;
int value;
{
  char string[STRING];

  sprintf(string, "Value %d passed to switch -%s out of range.\n",
    value, option);
  PrintError(string);
}


/* A simple procedure used throughout Astrolog: Print a particular */
/* character on the screen 'n' times.                              */

void PrintTab(chr, count)
char chr;
int count;
{
  int i;

  for (i = 0; i < count; i++)
    printc(chr);
}


/* Set an Ansi text color. */

void AnsiColor(col)
int col;
{
  /* Special case: If we are passed the value REVERSE, and ansi is not    */
  /* only on but set to a value > 1, then we'll enter reverse video mode. */

  if (!ansi || (col == REVERSE && ansi < 2))
    return;
  fprintf(S, "%c[", ESCAPE);
  if (col == DEFAULT)
    printc('0');
  else if (col == REVERSE) {
    printc('7');
  } else
    fprintf(S, "%c;%d", col > 7 ? '1' : '0', 30 + (col & 7));
  printc('m');
}


/* Print a zodiac position on the screen. This is basically just auto-   */
/* matically prints the string returned from CharZodiac() below, except  */
/* we round here to the nearest minute or second and take care of color. */

void PrintZodiac(deg)
real deg;
{
  if (!(operation & DASHs0))
    deg = Mod(deg + (seconds < 0 ? 1.0/60.0/60.0/2.0 : 1.0/60.0/2.0));
  else
    deg = Mod(deg + (seconds < 0 ? 1.0/4.0/60.0/2.0 : 1.0/4.0/2.0));
  AnsiColor(elemansi[(int) (deg / 30.0) & 3]);
  fprintf(S, "%s", CharZodiac(deg));
  AnsiColor(DEFAULT);
}


/* Given a zodiac position, return a string containing it as it's */
/* formatted for display to the user.                             */

char *CharZodiac(deg)
real deg;
{
  static char zod[11];
  int sign, d, m;
  real s;

  if (!(operation & DASHs0)) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -