📄 ica.sc
字号:
# ica - Perform Independent Component Analysis, standalone-version## Run the ICA algorithm of Bell & Sejnowski (1996) or the extended-ICA # of Lee, Girolami & Sejnowski (1998). Original Matlab code: Scott Makeig,# Tony Bell, et al.; C++ code: Sigurd Enghoff, CNL / Salk Institute 7/98## Usage: % ica < my.sc## Leading # -> use default values# Edit a copy of this file to run an ica decomposition# Contacts: {enghoff,scott,terry,tony,tewon}@salk.edu# Required variables: DataFile berger/modeldata # Input data to decompose (floats multiplexed # by channel (i.e., chan1, chan2, ...)) chans 31 # Number of data channels (= data rows) frames 768 # Number of data points per epoch (= data columns) epochs 436 # Number of epochs# FrameWindow 20 # Number of frames per window# FrameStep 4 # Number of frames to step per window# EpochWindow 100 # Number of epochs per window# EpochStep 25 # Number of epochs to step per window# Baseline 25 # Number of data points contained in baseline WeightsOutFile berger/data.wts # Output ICA weight matrix (floats) SphereFile berger/data.sph # Output sphering matrix (floats) # Processing options: # sphering on # Flag sphering of data (on/off) {default: on}# bias on # Perform bias adjustment (on/off) {default: on} extended 1 # Perform "extended-ICA" using tanh() with kurtosis # estimation every N training blocks. If N < 0, # fix number of sub-Gaussian components to -N # {default|0: off}# pca 0 # Decompose a principal component subspace of # the data. Retain this many PCs. {default|0: all}# Optional input variables: # WeightsInFile input.wts # Starting ICA weight matrix (nchans,ncomps) # {default: identity or sphering matrix} lrate 2.0e-3 # Initial ICA learning rate (float << 1) # {default: heuristic ~5e-4}# blocksize 20 # ICA block size (integer << datalength) # {default: heuristic fraction of log data length}# stop 1.0e-6 # Stop training when weight-change < this value # {default: heuristic ~0.000001} maxsteps 512 # Max. number of ICA training steps {default: 128}# posact on # Make each component activation net-positive # (on/off) {default: on}# annealstep 0.98 # Annealing factor (range (0,1]) - controls # the speed of convergence.# annealdeg 60 # Angledelta threshold for annealing {default: 60}# momentum 0.0 # Momentum gain (range [0,1]) {default: 0}# verbose off # Give ascii messages (on/off) {default: on} # Optional outputs: # ActivationsFile data.act # Activations of each component (ncomps,points)# BiasFile data.bs # Bias weights (ncomps,1)# SignFile data.sgn # Signs designating (-1) sub- and (1) super-Gaussian # components (ncomps,1)# This script, "ica.sc" is a sample ica script file. Copy and modify it as# desired. Note that the input data file(s) must be native floats.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -