📄 devrgn.c
字号:
if (pRect->left < pExtents->left) pExtents->left = pRect->left; if (pRect->right > pExtents->right) pExtents->right = pRect->right; pRect++; }}/*********************************************************************** * REGION_Coalesce * * Attempt to merge the rects in the current band with those in the * previous one. Used only by REGION_RegionOp. * * Results: * The new index for the previous band. * * Side Effects: * If coalescing takes place: * - rectangles in the previous band will have their bottom fields * altered. * - pReg->numRects will be decreased. * */static MWCOORDREGION_Coalesce ( MWCLIPREGION *pReg, /* Region to coalesce */ MWCOORD prevStart, /* Index of start of previous band */ MWCOORD curStart /* Index of start of current band */) { MWRECT *pPrevRect; /* Current rect in previous band */ MWRECT *pCurRect; /* Current rect in current band */ MWRECT *pRegEnd; /* End of region */ MWCOORD curNumRects; /* Number of rectangles in current band */ MWCOORD prevNumRects; /* Number of rectangles in previous band */ MWCOORD bandtop; /* top coordinate for current band */ pRegEnd = &pReg->rects[pReg->numRects]; pPrevRect = &pReg->rects[prevStart]; prevNumRects = curStart - prevStart; /* * Figure out how many rectangles are in the current band. Have to do * this because multiple bands could have been added in REGION_RegionOp * at the end when one region has been exhausted. */ pCurRect = &pReg->rects[curStart]; bandtop = pCurRect->top; for (curNumRects = 0; (pCurRect != pRegEnd) && (pCurRect->top == bandtop); curNumRects++) { pCurRect++; } if (pCurRect != pRegEnd) { /* * If more than one band was added, we have to find the start * of the last band added so the next coalescing job can start * at the right place... (given when multiple bands are added, * this may be pointless -- see above). */ pRegEnd--; while (pRegEnd[-1].top == pRegEnd->top) { pRegEnd--; } curStart = pRegEnd - pReg->rects; pRegEnd = pReg->rects + pReg->numRects; } if ((curNumRects == prevNumRects) && (curNumRects != 0)) { pCurRect -= curNumRects; /* * The bands may only be coalesced if the bottom of the previous * matches the top scanline of the current. */ if (pPrevRect->bottom == pCurRect->top) { /* * Make sure the bands have rects in the same places. This * assumes that rects have been added in such a way that they * cover the most area possible. I.e. two rects in a band must * have some horizontal space between them. */ do { if ((pPrevRect->left != pCurRect->left) || (pPrevRect->right != pCurRect->right)) { /* * The bands don't line up so they can't be coalesced. */ return (curStart); } pPrevRect++; pCurRect++; prevNumRects -= 1; } while (prevNumRects != 0); pReg->numRects -= curNumRects; pCurRect -= curNumRects; pPrevRect -= curNumRects; /* * The bands may be merged, so set the bottom of each rect * in the previous band to that of the corresponding rect in * the current band. */ do { pPrevRect->bottom = pCurRect->bottom; pPrevRect++; pCurRect++; curNumRects -= 1; } while (curNumRects != 0); /* * If only one band was added to the region, we have to backup * curStart to the start of the previous band. * * If more than one band was added to the region, copy the * other bands down. The assumption here is that the other bands * came from the same region as the current one and no further * coalescing can be done on them since it's all been done * already... curStart is already in the right place. */ if (pCurRect == pRegEnd) { curStart = prevStart; } else { do { *pPrevRect++ = *pCurRect++; } while (pCurRect != pRegEnd); } } } return (curStart);}/*********************************************************************** * REGION_RegionOp * * Apply an operation to two regions. Called by GdUnion, * GdXor, GdSubtract, GdIntersect... * * Results: * None. * * Side Effects: * The new region is overwritten. * * Notes: * The idea behind this function is to view the two regions as sets. * Together they cover a rectangle of area that this function divides * into horizontal bands where points are covered only by one region * or by both. For the first case, the nonOverlapFunc is called with * each the band and the band's upper and lower extents. For the * second, the overlapFunc is called to process the entire band. It * is responsible for clipping the rectangles in the band, though * this function provides the boundaries. * At the end of each band, the new region is coalesced, if possible, * to reduce the number of rectangles in the region. * */static voidREGION_RegionOp( MWCLIPREGION *newReg, /* Place to store result */ MWCLIPREGION *reg1, /* First region in operation */ MWCLIPREGION *reg2, /* 2nd region in operation */ void (*overlapFunc)(), /* Function to call for over-lapping bands */ void (*nonOverlap1Func)(), /* Function to call for non-overlapping bands in region 1 */ void (*nonOverlap2Func)() /* Function to call for non-overlapping bands in region 2 */) { MWRECT *r1; /* Pointer into first region */ MWRECT *r2; /* Pointer into 2d region */ MWRECT *r1End; /* End of 1st region */ MWRECT *r2End; /* End of 2d region */ MWCOORD ybot; /* Bottom of intersection */ MWCOORD ytop; /* Top of intersection */ MWRECT *oldRects; /* Old rects for newReg */ MWCOORD prevBand; /* Index of start of * previous band in newReg */ MWCOORD curBand; /* Index of start of current * band in newReg */ MWRECT *r1BandEnd; /* End of current band in r1 */ MWRECT *r2BandEnd; /* End of current band in r2 */ MWCOORD top; /* Top of non-overlapping band */ MWCOORD bot; /* Bottom of non-overlapping band */ /* * Initialization: * set r1, r2, r1End and r2End appropriately, preserve the important * parts of the destination region until the end in case it's one of * the two source regions, then mark the "new" region empty, allocating * another array of rectangles for it to use. */ r1 = reg1->rects; r2 = reg2->rects; r1End = r1 + reg1->numRects; r2End = r2 + reg2->numRects; /* * newReg may be one of the src regions so we can't empty it. We keep a * note of its rects pointer (so that we can free them later), preserve its * extents and simply set numRects to zero. */ oldRects = newReg->rects; newReg->numRects = 0; /* * Allocate a reasonable number of rectangles for the new region. The idea * is to allocate enough so the individual functions don't need to * reallocate and copy the array, which is time consuming, yet we don't * have to worry about using too much memory. I hope to be able to * nuke the Xrealloc() at the end of this function eventually. */ newReg->size = MWMAX(reg1->numRects,reg2->numRects) * 2; if (! (newReg->rects = malloc( sizeof(MWRECT) * newReg->size ))) { newReg->size = 0; return; } /* * Initialize ybot and ytop. * In the upcoming loop, ybot and ytop serve different functions depending * on whether the band being handled is an overlapping or non-overlapping * band. * In the case of a non-overlapping band (only one of the regions * has points in the band), ybot is the bottom of the most recent * intersection and thus clips the top of the rectangles in that band. * ytop is the top of the next intersection between the two regions and * serves to clip the bottom of the rectangles in the current band. * For an overlapping band (where the two regions intersect), ytop clips * the top of the rectangles of both regions and ybot clips the bottoms. */ if (reg1->extents.top < reg2->extents.top) ybot = reg1->extents.top; else ybot = reg2->extents.top; /* * prevBand serves to mark the start of the previous band so rectangles * can be coalesced into larger rectangles. qv. miCoalesce, above. * In the beginning, there is no previous band, so prevBand == curBand * (curBand is set later on, of course, but the first band will always * start at index 0). prevBand and curBand must be indices because of * the possible expansion, and resultant moving, of the new region's * array of rectangles. */ prevBand = 0; do { curBand = newReg->numRects; /* * This algorithm proceeds one source-band (as opposed to a * destination band, which is determined by where the two regions * intersect) at a time. r1BandEnd and r2BandEnd serve to mark the * rectangle after the last one in the current band for their * respective regions. */ r1BandEnd = r1; while ((r1BandEnd != r1End) && (r1BandEnd->top == r1->top)) { r1BandEnd++; } r2BandEnd = r2; while ((r2BandEnd != r2End) && (r2BandEnd->top == r2->top)) { r2BandEnd++; } /* * First handle the band that doesn't intersect, if any. * * Note that attention is restricted to one band in the * non-intersecting region at once, so if a region has n * bands between the current position and the next place it overlaps * the other, this entire loop will be passed through n times. */ if (r1->top < r2->top) { top = MWMAX(r1->top,ybot); bot = MWMIN(r1->bottom,r2->top); if ((top != bot) && (nonOverlap1Func != (void (*)())NULL)) { (* nonOverlap1Func) (newReg, r1, r1BandEnd, top, bot); } ytop = r2->top; } else if (r2->top < r1->top) { top = MWMAX(r2->top,ybot); bot = MWMIN(r2->bottom,r1->top); if ((top != bot) && (nonOverlap2Func != (void (*)())NULL)) { (* nonOverlap2Func) (newReg, r2, r2BandEnd, top, bot); } ytop = r1->top; } else { ytop = r1->top; } /* * If any rectangles got added to the region, try and coalesce them * with rectangles from the previous band. Note we could just do * this test in miCoalesce, but some machines incur a not * inconsiderable cost for function calls, so... */ if (newReg->numRects != curBand) { prevBand = REGION_Coalesce (newReg, prevBand, curBand); } /* * Now see if we've hit an intersecting band. The two bands only * intersect if ybot > ytop */ ybot = MWMIN(r1->bottom, r2->bottom); curBand = newReg->numRects; if (ybot > ytop) { (* overlapFunc) (newReg, r1, r1BandEnd, r2, r2BandEnd, ytop, ybot); } if (newReg->numRects != curBand) { prevBand = REGION_Coalesce (newReg, prevBand, curBand); } /* * If we've finished with a band (bottom == ybot) we skip forward * in the region to the next band. */ if (r1->bottom == ybot) { r1 = r1BandEnd; } if (r2->bottom == ybot) { r2 = r2BandEnd; } } while ((r1 != r1End) && (r2 != r2End)); /* * Deal with whichever region still has rectangles left. */ curBand = newReg->numRects; if (r1 != r1End) { if (nonOverlap1Func != (void (*)())NULL) { do { r1BandEnd = r1; while ((r1BandEnd < r1End) && (r1BandEnd->top == r1->top)) { r1BandEnd++; } (* nonOverlap1Func) (newReg, r1, r1BandEnd, MWMAX(r1->top,ybot), r1->bottom); r1 = r1BandEnd; } while (r1 != r1End); } } else if ((r2 != r2End) && (nonOverlap2Func != (void (*)())NULL)) { do { r2BandEnd = r2; while ((r2BandEnd < r2End) && (r2BandEnd->top == r2->top)) { r2BandEnd++; } (* nonOverlap2Func) (newReg, r2, r2BandEnd, MWMAX(r2->top,ybot), r2->bottom); r2 = r2BandEnd; } while (r2 != r2End); } if (newReg->numRects != curBand) { (void) REGION_Coalesce (newReg, prevBand, curBand); } /* * A bit of cleanup. To keep regions from growing without bound, * we shrink the array of rectangles to match the new number of * rectangles in the region. This never goes to 0, however... * * Only do this stuff if the number of rectangles allocated is more than * twice the number of rectangles in the region (a simple optimization...). */ if (newReg->numRects < (newReg->size >> 1)) { if (REGION_NOT_EMPTY(newReg)) { MWRECT *prev_rects = newReg->rects; newReg->size = newReg->numRects; newReg->rects = realloc( newReg->rects, sizeof(MWRECT) * newReg->size ); if (! newReg->rects) newReg->rects = prev_rects; } else { /* * No point in doing the extra work involved in an Xrealloc if * the region is empty */ newReg->size = 1; free( newReg->rects ); newReg->rects = malloc( sizeof(MWRECT) ); } } free( oldRects );}/*********************************************************************** * Region Intersection ***********************************************************************//*********************************************************************** * REGION_IntersectO * * Handle an overlapping band for REGION_Intersect. * * Results: * None. * * Side Effects: * Rectangles may be added to the region. * */static voidREGION_IntersectO(MWCLIPREGION *pReg, MWRECT *r1, MWRECT *r1End, MWRECT *r2, MWRECT *r2End, MWCOORD top, MWCOORD bottom){ MWCOORD left, right; MWRECT *pNextRect; pNextRect = &pReg->rects[pReg->numRects]; while ((r1 != r1End) && (r2 != r2End)) { left = MWMAX(r1->left, r2->left); right = MWMIN(r1->right, r2->right); /* * If there's any overlap between the two rectangles, add that * overlap to the new region. * There's no need to check for subsumption because the only way * such a need could arise is if some region has two rectangles * right next to each other. Since that should never happen...
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -