⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sc.c

📁 神龙卡开发原代码
💻 C
字号:
/***********************************************************************sc.c - creates classifiers from feature vectors of examples, as well as   classifying example feature vectors.Copyright (C) 1991 Dean RubineThis program is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 1, or (at your option)any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program (in ../COPYING); if not, write to the FreeSoftware Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.***********************************************************************/#include "bitvector.h"#include "matrix.h"#include "util.h"#include "sc.h"#include "stdio.h"#include "stdlib.h"#include "math.h"#include "zdebug.h"#define	EPS	(1.0e-6)	/* for singular matrix check */sClassifiersNewClassifier(){	register sClassifier sc = allocate(1, struct sclassifier);	sc->nfeatures = -1;	sc->nclasses = 0;	sc->classdope = allocate(MAXSCLASSES, sClassDope);	sc->w = NULL;	return sc;}voidsFreeClassifier(sc)register sClassifier sc;{	register int i;	register sClassDope scd;	for(i = 0; i < sc->nclasses; i++) {		scd = sc->classdope[i];		if(scd->name) free(scd->name);		if(scd->sumcov) FreeMatrix(scd->sumcov);		if(scd->average) FreeVector(scd->average);		free(scd);		if(sc->w && sc->w[i]) FreeVector(sc->w[i]);	}	free(sc->classdope);	if(sc->w) free(sc->w);	if(sc->cnst) FreeVector(sc->cnst);	if(sc->invavgcov) FreeMatrix(sc->invavgcov);	free(sc);}sClassDopesClassNameLookup(sc, classname)register sClassifier sc;register char *classname;{	register int i;	register sClassDope scd;	static sClassifier lastsc = NULL;	static sClassDope lastscd = NULL;	/* quick check for last class name */	if(lastsc == sc && lastscd != NULL && STREQ(lastscd->name, classname))		return lastscd;	/* linear search through all classes for name */	for(i = 0; i < sc->nclasses; i++) {		scd = sc->classdope[i];		if(STREQ(scd->name, classname))			return lastsc = sc, lastscd = scd;	}	lastsc = NULL;	lastscd = NULL;	return NULL;}static sClassDopesAddClass(sc, classname)register sClassifier sc;char *classname;{	register sClassDope scd;	sc->classdope[sc->nclasses] = scd = allocate(1, struct sclassdope);	scd->name = scopy(classname);	scd->number = sc->nclasses;	scd->nexamples = 0;	scd->sumcov = NULL;	++sc->nclasses;	return scd;}voidsAddExample(sc, classname, y)register sClassifier sc;char *classname;Vector y;{	register sClassDope scd;	register int i, j;	double nfv[50];	double nm1on, recipn;	scd = sClassNameLookup(sc, classname);	if(scd == NULL) {/* fprintf(stderr, "sAddExample: calling sAddClass on %s.\n", classname); */		scd = sAddClass(sc, classname);	      }	if(sc->nfeatures == -1) {		sc->nfeatures = NROWS(y);/*		fprintf(stderr, "sAddExample: setting sc->nfeatures to NROWS(y).\n"); */	      }	if(scd->nexamples == 0) {/* 		fprintf(stderr, "sAddExample: allocating  & zeroing scd->average & scd->sumcov.\n"); */		scd->average = NewVector(sc->nfeatures);		ZeroVector(scd->average);		scd->sumcov = NewMatrix(sc->nfeatures, sc->nfeatures);		ZeroMatrix(scd->sumcov);	}	if(sc->nfeatures != NROWS(y)) {		PrintVector(y, "sAddExample: funny feature vector nrows!=%d", 			sc->nfeatures);		return;	}	scd->nexamples++;	nm1on = ((double) scd->nexamples-1)/scd->nexamples;	recipn = 1.0/scd->nexamples;	/* incrementally update covariance matrix */        for(i = 0; i < sc->nfeatures; i++)		nfv[i] = y[i] - scd->average[i];	/* only upper triangular part computed */        for(i = 0; i < sc->nfeatures; i++)	   for(j = i; j < sc->nfeatures; j++)		scd->sumcov[i][j] += nm1on * nfv[i] * nfv[j];	/* incrementally update mean vector */	for(i = 0; i < sc->nfeatures; i++)		scd->average[i] = nm1on * scd->average[i] + recipn * y[i];}voidsDoneAdding(sc)register sClassifier sc;{	register int i, j;	int c;	int ne, denom;	double oneoverdenom;	register Matrix s;	register Matrix avgcov;	double det;	register sClassDope scd;	if(sc->nclasses == 0) {		error("No classes for adding to classifier");		return;	    }	/* Given covariance matrices for each class (* number of examples - 1)	    compute the average (common) covariance matrix */	avgcov = NewMatrix(sc->nfeatures, sc->nfeatures);	ZeroMatrix(avgcov);	ne = 0;	for(c = 0; c < sc->nclasses; c++) {		scd = sc->classdope[c];		ne += scd->nexamples;		s = scd->sumcov;		for(i = 0; i < sc->nfeatures; i++)			for(j = i; j < sc->nfeatures; j++)				avgcov[i][j] += s[i][j]; 	}	denom = ne - sc->nclasses;	if(denom <= 0) {	    error("Number of classes must be less than number of examples");	    return;	}	oneoverdenom = 1.0 / denom;	for(i = 0; i < sc->nfeatures; i++)		for(j = i; j < sc->nfeatures; j++)			avgcov[j][i] = avgcov[i][j] *= oneoverdenom;	Z('a') PrintMatrix(avgcov, "Average Covariance Matrix\n");	/* invert the avg covariance matrix */	sc->invavgcov = NewMatrix(sc->nfeatures, sc->nfeatures);	det = InvertMatrix(avgcov, sc->invavgcov);	if(fabs(det) <= EPS)		FixClassifier(sc, avgcov);		/* now compute discrimination functions */	sc->w = allocate(sc->nclasses, Vector);	sc->cnst = NewVector(sc->nclasses);	for(c = 0; c < sc->nclasses; c++) {		scd = sc->classdope[c];		sc->w[c] = NewVector(sc->nfeatures);		VectorTimesMatrix(scd->average, sc->invavgcov, sc->w[c]);		sc->cnst[c] = -0.5 * InnerProduct(sc->w[c], scd->average);		/* could add log(priorprob class c) to cnst[c] */	}	FreeMatrix(avgcov);	return;}sClassDopesClassify(sc, fv) {	return sClassifyAD(sc, fv, NULL, NULL);}sClassDopesClassifyAD(sc, fv, ap, dp)sClassifier sc;Vector fv;double *ap;double *dp;{	double disc[MAXSCLASSES];	register int i, maxclass;	double denom, exp();	register sClassDope scd;	double d;	if(sc->w == NULL) {		error("%x not a trained classifier", sc);		return(NULL);       }	for(i = 0; i < sc->nclasses; i++) {/* ari */	  double IP;	  IP = InnerProduct(sc->w[i], fv);/*	  fprintf(stderr, "sClassifyAD:  InnerProduct for class %s is %f.\n", sc->classdope[i]->name, IP); *//*	  fprintf(stderr, "sClassifyAD:  sc->cnst[i] = %f.\n", sc->cnst[i]); */	  disc[i] = IP + sc->cnst[i];/*	  fprintf(stderr, "sClassifyAD:  Set disc = %f for class %s.\n", disc[i],sc->classdope[i]->name); */	    /*	  disc[i] = InnerProduct(sc->w[i], fv) + sc->cnst[i]; */	}	maxclass = 0;	for(i = 1; i < sc->nclasses; i++)		if(disc[i] > disc[maxclass])			maxclass = i;/* ari *//* PF_INIT_COS	0	 initial angle (cos)                         *//* PF_INIT_SIN	1	 initial angle (sin)                         *//* PF_BB_LEN	2	 length of bounding box diagonal             *//* PF_BB_TH	3	 angle of bounding box diagonal              *//* PF_SE_LEN	4	 length between start and end points         *//* PF_SE_COS	5	 cos of angle between start and end points   *//* PF_SE_SIN	6	 sin of angle between start and end points   *//* PF_LEN	7	 arc length of path                          *//* PF_TH	8	 total angle traversed                       *//* PF_ATH	9	 sum of abs vals of angles traversed         *//* PF_SQTH	10	 sum of squares of angles traversed          *//* PF_DUR	11	 duration of path                            */ /* ifndef USE_TIME                                                   *//* 	NFEATURES	12                                           *//* else                                                              *//* 	PF_MAXV		12	   maximum speed                     *//* 	NFEATURES	13                                           *//* endif                                                             *//** fprintf(stderr, "\nFeature vector:\n");* fprintf(stderr, "    start cosine      %8.4f    path length       %8.4f\n",* 	fv[PF_INIT_COS], fv[PF_LEN]);* fprintf(stderr, "    start sine        %8.4f    total angle       %8.4f\n",* 	fv[PF_INIT_SIN], fv[PF_TH]);* fprintf(stderr, "    b.b. length       %8.4f    total abs. angle  %8.4f\n",* 	fv[PF_BB_LEN], fv[PF_ATH]);* fprintf(stderr, "    b.b. angle        %8.4f    total sq. angle   %8.4f\n",* 	fv[PF_BB_TH], fv[PF_SQTH]);* fprintf(stderr, "    st-end length     %8.4f    duration          %8.4f\n",* 	fv[PF_SE_LEN], fv[PF_DUR]);* fprintf(stderr, "    st-end cos        %8.4f\n", fv[PF_SE_COS]);* fprintf(stderr, "    st-end sin        %8.4f\n", fv[PF_SE_SIN]);*/ 	ZZ('C') {		scd = sc->classdope[maxclass];		PrintVector(fv, "%10.10s  ", scd->name);		ZZZ('C') {			for(i = 0; i < sc->nclasses; i++) {				scd = sc->classdope[i];				PrintVector(scd->average, "%5.5s %5g ",					scd->name, disc[i]);			}		}	}	scd = sc->classdope[maxclass];/* ari *//* fprintf(stderr,"%s", scd->name); *//*   fprintf(stderr,"Stroke identified as %s [ ", scd->name);   for (i = 0; i < sc->nclasses; i++) {      if ( (disc[maxclass] - disc[i] < 5.0) && (i != maxclass) )         fprintf(stderr,"%s ", sc->classdope[i]->name);   }   fprintf(stderr,"], ");*/	if(ap) {	/* calculate probability of non-ambiguity */		for(denom = 0, i = 0; i < sc->nclasses; i++)			/* quick check to avoid computing negligible term */			if((d = disc[i] - disc[maxclass]) > -7.0)				denom += exp(d);		*ap = 1.0 / denom;	}	if(dp) 	/* calculate distance to mean of chosen class */		*dp = MahalanobisDistance(fv, scd->average, sc->invavgcov);	return scd;}/* Compute (v-u)' sigma (v-u) */doubleMahalanobisDistance(v, u, sigma)register Vector v, u;register Matrix sigma;{	register int i;	static Vector space;	double result;	if(space == NULL || NROWS(space) != NROWS(v)) {		if(space) FreeVector(space);		space = NewVector(NROWS(v));	}	for(i = 0; i < NROWS(v); i++)		space[i] = v[i] - u[i];	result =  QuadraticForm(space, sigma);	return result;}voidFixClassifier(sc, avgcov)register sClassifier sc;Matrix avgcov;{	int i;	double det;	BitVector bv;	Matrix m, r;	/* just add the features one by one, discarding any that cause	   the matrix to be non-invertible */	CLEAR_BIT_VECTOR(bv);	for(i = 0; i < sc->nfeatures; i++) {		BIT_SET(i, bv);		m = SliceMatrix(avgcov, bv, bv);		r = NewMatrix(NROWS(m), NCOLS(m));		det = InvertMatrix(m, r);		if(fabs(det) <= EPS)			BIT_CLEAR(i, bv);		FreeMatrix(m);		FreeMatrix(r);	}	m = SliceMatrix(avgcov, bv, bv);	r = NewMatrix(NROWS(m), NCOLS(m));	det = InvertMatrix(m, r);	if(fabs(det) <= EPS) {		error("Can't fix classifier!");		return;	    }	DeSliceMatrix(r, 0.0, bv, bv, sc->invavgcov);	FreeMatrix(m);	FreeMatrix(r);}voidsDumpClassifier(sc)register sClassifier sc;{	register sClassIndex c;	printf("\n----Classifier %x, %d features:-----\n", (int)sc, sc->nfeatures);	printf("%d classes: ", sc->nclasses);	for(c = 0; c < sc->nclasses; c++)		printf("%s  ", sc->classdope[c]->name);	printf("Discrimination functions:\n");	for(c = 0; c < sc->nclasses; c++) {		PrintVector(sc->w[c], "%s: %g + ", sc->classdope[c]->name, sc->cnst[c]);		printf("Mean vectors:\n");		PrintVector(sc->classdope[c]->average, "%s: ", sc->classdope[c]->name);	    }	if( sc->invavgcov != NULL ) {	    PrintMatrix(sc->invavgcov, "Inverse average covariance matrix:\n");	}	printf("\n---------\n\n");}voidsWrite(outfile, sc)FILE *outfile;sClassifier sc;{	int i;	register sClassDope scd;	fprintf(outfile, "%d classes\n", sc->nclasses);	for(i = 0; i < sc->nclasses; i++) {		scd = sc->classdope[i];		fprintf(outfile, "%s\n", scd->name);	}	for(i = 0; i < sc->nclasses; i++) {		scd = sc->classdope[i];		OutputVector(outfile, scd->average);		OutputMatrix(outfile, scd->sumcov);		OutputVector(outfile, sc->w[i]);	}	OutputVector(outfile, sc->cnst);	OutputMatrix(outfile, sc->invavgcov);}sClassifiersRead(infile)FILE *infile;{	int i, n;	register sClassifier sc;	register sClassDope scd;	char buf[100];		Z('a') printf("Reading classifier \n");	sc = sNewClassifier();	fgets(buf, 100, infile);	if(sscanf(buf, "%d", &n) != 1) {	    error("Input error in classifier file");	    sFreeClassifier(sc);	    return(NULL);	}	Z('a') printf("  %d classes \n", n);	for(i = 0; i < n; i++) {		fscanf(infile, "%s", buf);		scd = sAddClass(sc, buf);		Z('a') printf("  %s \n", scd->name);	}	sc->w = allocate(sc->nclasses, Vector);	for(i = 0; i < sc->nclasses; i++) {		scd = sc->classdope[i];		scd->average = InputVector(infile);		scd->sumcov = InputMatrix(infile);		sc->w[i] = InputVector(infile);	}	sc->cnst = InputVector(infile);	sc->invavgcov = InputMatrix(infile);	Z('a') printf("\n");	return sc;}voidsDistances(sc, nclosest)register sClassifier sc;{	register Matrix d = NewMatrix(sc->nclasses, sc->nclasses);	register int i, j;	double min, max = 0;	int n, mi, mj;	printf("-----------\n");	printf("Computing %d closest pairs of classes\n", nclosest);	for(i = 0; i < NROWS(d); i++) {		for(j = i+1; j < NCOLS(d); j++) {			d[i][j] = MahalanobisDistance(						sc->classdope[i]->average,						sc->classdope[j]->average,						sc->invavgcov);			if(d[i][j] > max) max = d[i][j];		}	}	for(n = 1; n <= nclosest; n++) {		min = max;		mi = mj = -1;		for(i = 0; i < NROWS(d); i++) {			for(j = i+1; j < NCOLS(d); j++) {				if(d[i][j] < min)					min = d[mi=i][mj=j];			}		}		if(mi == -1)			break;		printf("%2d) %10.10s to %10.10s d=%g nstd=%g\n",			n,			sc->classdope[mi]->name,			sc->classdope[mj]->name,			d[mi][mj],			sqrt(d[mi][mj]));		d[mi][mj] = max+1;	}	printf("-----------\n");	FreeMatrix(d);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -