📄 demo8_6.cpp
字号:
// return success
return(1);
} // end Scale_Polygon2D_Mat
///////////////////////////////////////////////////////////
inline int Draw_Pixel(int x, int y,int color,
UCHAR *video_buffer, int lpitch)
{
// this function plots a single pixel at x,y with color
video_buffer[x + y*lpitch] = color;
// return success
return(1);
} // end Draw_Pixel
/////////////////////////////////////////////////////////////
int Draw_Text_GDI(char *text, int x,int y,int color, LPDIRECTDRAWSURFACE4 lpdds)
{
// this function draws the sent text on the sent surface
// using color index as the color in the palette
HDC xdc; // the working dc
// get the dc from surface
if (FAILED(lpdds->GetDC(&xdc)))
return(0);
// set the colors for the text up
SetTextColor(xdc,RGB(palette[color].peRed,palette[color].peGreen,palette[color].peBlue) );
// set background mode to transparent so black isn't copied
SetBkMode(xdc, TRANSPARENT);
// draw the text a
TextOut(xdc,x,y,text,strlen(text));
// release the dc
lpdds->ReleaseDC(xdc);
// return success
return(1);
} // end Draw_Text_GDI
///////////////////////////////////////////////////////////////////
int DDraw_Fill_Surface(LPDIRECTDRAWSURFACE4 lpdds,int color)
{
DDBLTFX ddbltfx; // this contains the DDBLTFX structure
// clear out the structure and set the size field
DDRAW_INIT_STRUCT(ddbltfx);
// set the dwfillcolor field to the desired color
ddbltfx.dwFillColor = color;
// ready to blt to surface
lpdds->Blt(NULL, // ptr to dest rectangle
NULL, // ptr to source surface, NA
NULL, // ptr to source rectangle, NA
DDBLT_COLORFILL | DDBLT_WAIT, // fill and wait
&ddbltfx); // ptr to DDBLTFX structure
// return success
return(1);
} // end DDraw_Fill_Surface
///////////////////////////////////////////////////////////////
int Draw_Clip_Line(int x0,int y0, int x1, int y1,UCHAR color,
UCHAR *dest_buffer, int lpitch)
{
// this helper function draws a clipped line
int cxs, cys,
cxe, cye;
// clip and draw each line
cxs = x0;
cys = y0;
cxe = x1;
cye = y1;
// clip the line
if (Clip_Line(cxs,cys,cxe,cye))
Draw_Line(cxs, cys, cxe,cye,color,dest_buffer,lpitch);
// return success
return(1);
} // end Draw_Clip_Line
///////////////////////////////////////////////////////////
int Clip_Line(int &x1,int &y1,int &x2, int &y2)
{
// this function clips the sent line using the globally defined clipping
// region
// internal clipping codes
#define CLIP_CODE_C 0x0000
#define CLIP_CODE_N 0x0008
#define CLIP_CODE_S 0x0004
#define CLIP_CODE_E 0x0002
#define CLIP_CODE_W 0x0001
#define CLIP_CODE_NE 0x000a
#define CLIP_CODE_SE 0x0006
#define CLIP_CODE_NW 0x0009
#define CLIP_CODE_SW 0x0005
int xc1=x1,
yc1=y1,
xc2=x2,
yc2=y2;
int p1_code=0,
p2_code=0;
// determine codes for p1 and p2
if (y1 < min_clip_y)
p1_code|=CLIP_CODE_N;
else
if (y1 > max_clip_y)
p1_code|=CLIP_CODE_S;
if (x1 < min_clip_x)
p1_code|=CLIP_CODE_W;
else
if (x1 > max_clip_x)
p1_code|=CLIP_CODE_E;
if (y2 < min_clip_y)
p2_code|=CLIP_CODE_N;
else
if (y2 > max_clip_y)
p2_code|=CLIP_CODE_S;
if (x2 < min_clip_x)
p2_code|=CLIP_CODE_W;
else
if (x2 > max_clip_x)
p2_code|=CLIP_CODE_E;
// try and trivially reject
if ((p1_code & p2_code))
return(0);
// test for totally visible, if so leave points untouched
if (p1_code==0 && p2_code==0)
return(1);
// determine end clip point for p1
switch(p1_code)
{
case CLIP_CODE_C: break;
case CLIP_CODE_N:
{
yc1 = min_clip_y;
xc1 = x1 + 0.5+(min_clip_y-y1)*(x2-x1)/(y2-y1);
} break;
case CLIP_CODE_S:
{
yc1 = max_clip_y;
xc1 = x1 + 0.5+(max_clip_y-y1)*(x2-x1)/(y2-y1);
} break;
case CLIP_CODE_W:
{
xc1 = min_clip_x;
yc1 = y1 + 0.5+(min_clip_x-x1)*(y2-y1)/(x2-x1);
} break;
case CLIP_CODE_E:
{
xc1 = max_clip_x;
yc1 = y1 + 0.5+(max_clip_x-x1)*(y2-y1)/(x2-x1);
} break;
// these cases are more complex, must compute 2 intersections
case CLIP_CODE_NE:
{
// north hline intersection
yc1 = min_clip_y;
xc1 = x1 + 0.5+(min_clip_y-y1)*(x2-x1)/(y2-y1);
// test if intersection is valid, of so then done, else compute next
if (xc1 < min_clip_x || xc1 > max_clip_x)
{
// east vline intersection
xc1 = max_clip_x;
yc1 = y1 + 0.5+(max_clip_x-x1)*(y2-y1)/(x2-x1);
} // end if
} break;
case CLIP_CODE_SE:
{
// south hline intersection
yc1 = max_clip_y;
xc1 = x1 + 0.5+(max_clip_y-y1)*(x2-x1)/(y2-y1);
// test if intersection is valid, of so then done, else compute next
if (xc1 < min_clip_x || xc1 > max_clip_x)
{
// east vline intersection
xc1 = max_clip_x;
yc1 = y1 + 0.5+(max_clip_x-x1)*(y2-y1)/(x2-x1);
} // end if
} break;
case CLIP_CODE_NW:
{
// north hline intersection
yc1 = min_clip_y;
xc1 = x1 + 0.5+(min_clip_y-y1)*(x2-x1)/(y2-y1);
// test if intersection is valid, of so then done, else compute next
if (xc1 < min_clip_x || xc1 > max_clip_x)
{
xc1 = min_clip_x;
yc1 = y1 + 0.5+(min_clip_x-x1)*(y2-y1)/(x2-x1);
} // end if
} break;
case CLIP_CODE_SW:
{
// south hline intersection
yc1 = max_clip_y;
xc1 = x1 + 0.5+(max_clip_y-y1)*(x2-x1)/(y2-y1);
// test if intersection is valid, of so then done, else compute next
if (xc1 < min_clip_x || xc1 > max_clip_x)
{
xc1 = min_clip_x;
yc1 = y1 + 0.5+(min_clip_x-x1)*(y2-y1)/(x2-x1);
} // end if
} break;
default:break;
} // end switch
// determine clip point for p2
switch(p2_code)
{
case CLIP_CODE_C: break;
case CLIP_CODE_N:
{
yc2 = min_clip_y;
xc2 = x2 + (min_clip_y-y2)*(x1-x2)/(y1-y2);
} break;
case CLIP_CODE_S:
{
yc2 = max_clip_y;
xc2 = x2 + (max_clip_y-y2)*(x1-x2)/(y1-y2);
} break;
case CLIP_CODE_W:
{
xc2 = min_clip_x;
yc2 = y2 + (min_clip_x-x2)*(y1-y2)/(x1-x2);
} break;
case CLIP_CODE_E:
{
xc2 = max_clip_x;
yc2 = y2 + (max_clip_x-x2)*(y1-y2)/(x1-x2);
} break;
// these cases are more complex, must compute 2 intersections
case CLIP_CODE_NE:
{
// north hline intersection
yc2 = min_clip_y;
xc2 = x2 + 0.5+(min_clip_y-y2)*(x1-x2)/(y1-y2);
// test if intersection is valid, of so then done, else compute next
if (xc2 < min_clip_x || xc2 > max_clip_x)
{
// east vline intersection
xc2 = max_clip_x;
yc2 = y2 + 0.5+(max_clip_x-x2)*(y1-y2)/(x1-x2);
} // end if
} break;
case CLIP_CODE_SE:
{
// south hline intersection
yc2 = max_clip_y;
xc2 = x2 + 0.5+(max_clip_y-y2)*(x1-x2)/(y1-y2);
// test if intersection is valid, of so then done, else compute next
if (xc2 < min_clip_x || xc2 > max_clip_x)
{
// east vline intersection
xc2 = max_clip_x;
yc2 = y2 + 0.5+(max_clip_x-x2)*(y1-y2)/(x1-x2);
} // end if
} break;
case CLIP_CODE_NW:
{
// north hline intersection
yc2 = min_clip_y;
xc2 = x2 + 0.5+(min_clip_y-y2)*(x1-x2)/(y1-y2);
// test if intersection is valid, of so then done, else compute next
if (xc2 < min_clip_x || xc2 > max_clip_x)
{
xc2 = min_clip_x;
yc2 = y2 + 0.5+(min_clip_x-x2)*(y1-y2)/(x1-x2);
} // end if
} break;
case CLIP_CODE_SW:
{
// south hline intersection
yc2 = max_clip_y;
xc2 = x2 + 0.5+(max_clip_y-y2)*(x1-x2)/(y1-y2);
// test if intersection is valid, of so then done, else compute next
if (xc2 < min_clip_x || xc2 > max_clip_x)
{
xc2 = min_clip_x;
yc2 = y2 + 0.5+(min_clip_x-x2)*(y1-y2)/(x1-x2);
} // end if
} break;
default:break;
} // end switch
// do bounds check
if ((xc1 < min_clip_x) || (xc1 > max_clip_x) ||
(yc1 < min_clip_y) || (yc1 > max_clip_y) ||
(xc2 < min_clip_x) || (xc2 > max_clip_x) ||
(yc2 < min_clip_y) || (yc2 > max_clip_y) )
{
return(0);
} // end if
// store vars back
x1 = xc1;
y1 = yc1;
x2 = xc2;
y2 = yc2;
return(1);
} // end Clip_Line
/////////////////////////////////////////////////////////////
int Draw_Line(int x0, int y0, // starting position
int x1, int y1, // ending position
UCHAR color, // color index
UCHAR *vb_start, int lpitch) // video buffer and memory pitch
{
// this function draws a line from xo,yo to x1,y1 using differential error
// terms (based on Bresenahams work)
int dx, // difference in x's
dy, // difference in y's
dx2, // dx,dy * 2
dy2,
x_inc, // amount in pixel space to move during drawing
y_inc, // amount in pixel space to move during drawing
error, // the discriminant i.e. error i.e. decision variable
index; // used for looping
// pre-compute first pixel address in video buffer
vb_start = vb_start + x0 + y0*lpitch;
// compute horizontal and vertical deltas
dx = x1-x0;
dy = y1-y0;
// test which direction the line is going in i.e. slope angle
if (dx>=0)
{
x_inc = 1;
} // end if line is moving right
else
{
x_inc = -1;
dx = -dx; // need absolute value
} // end else moving left
// test y component of slope
if (dy>=0)
{
y_inc = lpitch;
} // end if line is moving down
else
{
y_inc = -lpitch;
dy = -dy; // need absolute value
} // end else moving up
// compute (dx,dy) * 2
dx2 = dx << 1;
dy2 = dy << 1;
// now based on which delta is greater we can draw the line
if (dx > dy)
{
// initialize error term
error = dy2 - dx;
// draw the line
for (index=0; index <= dx; index++)
{
// set the pixel
*vb_start = color;
// test if error has overflowed
if (error >= 0)
{
error-=dx2;
// move to next line
vb_start+=y_inc;
} // end if error overflowed
// adjust the error term
error+=dy2;
// move to the next pixel
vb_start+=x_inc;
} // end for
} // end if |slope| <= 1
else
{
// initialize error term
error = dx2 - dy;
// draw the line
for (index=0; index <= dy; index++)
{
// set the pixel
*vb_start = color;
// test if error overflowed
if (error >= 0)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -