📄 bin_am_put_payout.cc
字号:
// file bin_am_put.cc// author: Bernt A Oedegaard// calculate the binomial option pricing formula for an American put#include <cmath> // standard mathematical library#include <algorithm> // defining the max() operator#include <vector> // STL vector templatesusing namespace std; double option_price_put_american_binomial_payout( double S, // spot price double X, // exercice price double r, // interest rate double y, // payout double sigma, // volatility double t, // time to maturity int steps){ // no steps in binomial tree double R = exp(r*(t/steps)); // interest rate for each step double Rinv = 1.0/R; // inverse of interest rate double u = exp(sigma*sqrt(t/steps)); // up movement double uu = u*u; double d = 1.0/u; double p_up = (exp((r-y)*(t/steps))-d)/(u-d); double p_down = 1.0-p_up; vector<double> prices(steps+1); // price of underlying vector<double> put_values(steps+1); // value of corresponding put prices[0] = S*pow(d, steps); // fill in the endnodes. for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i-1]; for (int i=0; i<=steps; ++i) put_values[i] = max(0.0, (X-prices[i])); // put payoffs at maturity for (int step=steps-1; step>=0; --step) { for (int i=0; i<=step; ++i) { put_values[i] = (p_up*put_values[i+1]+p_down*put_values[i])*Rinv; prices[i] = d*prices[i+1]; put_values[i] = max(put_values[i],(X-prices[i])); // check for exercise }; }; return put_values[0];};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -