📄 clusterabs.m
字号:
clc,clear;
str='读入数据'
path(path,'c:\');
load demo.txt;
sum=0;
for i=1:1:20
for j=1:1:20
sum=0;
if i==j
cof(i,j)=1;
continue;
end
for k=1:1:4
sum=sum+abs(demo(i,k)-demo(j,k));
end
cof(i,j)=0.07/sum;
end
end
for i=1:1:20
for j=1:1:20
cof(i,j)=round(cof(i,j)*1000)/1000;
end
end
%传递闭包
str='传递闭包,k值越大两矩阵越差异'
R=0;
result=cof;
for k=1:1:5
flag=0;
last=result;
for i=1:1:20
for j=1:1:20
f=max(min(result(i,:),result(:,j)'));
result(i,j)=f;
end
end
for i=1:1:20
for j=1:1:20
if result(i,j)~=last(i,j)
flag=flag+1;
end
end
end
k
flag
end
str='选取最佳阈值'
temp=result;
count=0;
kind=0;
exitflag=0;
for thre=0:0.01:0.5
thre=1-thre;
result=temp;
for j=1:1:20
for k=1:1:20
if result(j,k)>=thre
result(j,k)=1;
else
result(j,k)=0;
end
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -