📄 clusteradvance.m
字号:
clc;clear
path(path,'c:\');
load demo.txt
figure(1);
eucD = pdist(demo,'euclidean');
clustTreeEuc = linkage(eucD,'average');
cophenet(clustTreeEuc,eucD)
[h,nodes] = dendrogram(clustTreeEuc,0);
title('euclidean');
figure(2);
cosD = pdist(demo,'cosine');
clustTreeCos = linkage(cosD,'average');
cophenet(clustTreeCos,cosD)
[h,nodes] = dendrogram(clustTreeCos,0);
title('cosine');
figure(3);
clustTreeCen = linkage(eucD,'centroid');
[h,nodes] = dendrogram(clustTreeCen,0);
title('centroid');
figure(4);
clustTreeWard = linkage(eucD,'ward');
[h,nodes] = dendrogram(clustTreeWard,0);
title('ward');
ptsymb = {'bs','r^','md','go','c+'};
figure(5)
hidx = cluster(clustTreeCos,'criterion','distance','cutoff',.08);
for i = 1:5
clust = find(hidx==i);
plot3(demo(clust,1),demo(clust,2),demo(clust,3),ptsymb{i});
hold on
end
hold off
xlabel('A factor'); ylabel('G factor'); zlabel('C factor');
view(-137,10);
grid on
figure(6);
[cidx2,cmeans2] = kmeans(demo,4,'dist','sqeuclidean');
[silh2,h] = silhouette(demo,cidx2,'sqeuclidean');
lnsymb = {'b-','r-','m-'};
[cidxCos,cmeansCos] = kmeans(demo,2,'dist','cos');
names = {'SL','SW','PL','PW'};
meas0 = demo ./ repmat(sqrt(sum(demo.^2,2)),1,4);
ymin = min(min(meas0));
ymax = max(max(meas0));
for i = 1:2
subplot(1,2,i); plot(meas0(cidxCos==i,:)',lnsymb{i});
hold on; plot(cmeansCos(i,:)','k-','LineWidth',2); hold off;
title(sprintf('Cluster %d',i));
set(gca,'Xlim',[.9 4.1],'XTick',1:4,'XTickLabel',names,'YLim',[ymin ymax])
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -