⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex1.java

📁 Java与模式 源代码
💻 JAVA
字号:
package com.javapatterns.immutable.complex;

public final class Complex1 extends Number
implements java.io.Serializable, Cloneable, Comparable
{
    /** The imaginary unit. */
    private static final Complex1 i = new Complex1(0.0, 1.0);

    /** Real part of the Complex. */
    private double re;

    /** Imaginary part of the Complex. */
    private double im;

    /** String used in converting Complex to String. */
    private static String suffix = "i";


    /**
     *	Constructs a Complex equal to the argument.
     *	@param	z	A Complex object If z is null then a NullPointerException is thrown.
     */
    public Complex1(Complex1 z)
    {
        re = z.real();
        im = z.image();
    }


    /**
     *	Constructs a Complex with real and imaginary parts given by the input arguments.
     *	@param	re	A double value equal to the real part of the Complex object.
     *	@param	im	A double value equal to the imaginary part of the Complex object.
     */
    public Complex1(double re, double im)
    {
        this.re = re;
        this.im = im;
    }


    /**
     *	Constructs a Complex with a zero imaginary part.
     *	@param	re	A double value equal to the real part of the Complex object.
     */
    public Complex1(double re)
    {
        this.re = re;
        this.im = 0.0;
    }


    /** Constructs a Complex equal to zero. */
    public Complex1()
    {
        re = 0.0;
        im = 0.0;
    }

    /**
     *	Compares with another Complex. <p><em>Note: To be useful in hashtables this method
     * considers two NaN double values to be equal. This is not according to IEEE specification.</em>
     *	@param	z	A Complex object.
     *	@return True if the real and imaginary parts of this object
     * are equal to their counterparts in the argument; false, otherwise.
     */
    public boolean equals(Complex1 z)
    {
        return (Math.abs(re - z.re) < Double.MIN_VALUE * 2
        && Math.abs(im - z.im) < Double.MIN_VALUE * 2);
    }


    /**
     *	Compares this object against the specified object.
     *	@param	obj	The object to compare with.
     *	@return True if the objects are the same; false otherwise.
     */
    public boolean equals(Object obj)
    {
        if (obj == null)
        {
            return false;
        }
        else if (obj instanceof Complex)
        {
            return equals((Complex)obj);
        }
        else
        {
            return false;
        }
    }

    /**
     *	Returns a hashcode for this Complex.
     *	@return  A hash code value for this object.
     */
    public int hashCode()
    {
        long reBits = Double.doubleToLongBits(re);
        long imBits = Double.doubleToLongBits(im);
        return (int)((reBits ^ imBits) ^ ((reBits ^ imBits) >> 32));
    }

    /** Returns the value of the real part as a short. */
    public short shortValue()
    {
        return (short)re;
    }

    /**
     *	Returns the real part of a Complex object.
     *	@return	The real part of z.
     */
    public double real()
    {
        return re;
    }

    /**
     *	Returns the imaginary part of a Complex object.
     *	@param	z	A Complex object.
     *	@return	The imaginary part of z.
     */
    public double image()
    {
        return im;
    }

    /** Returns the value of the real part as an int. */
    public int intValue()
    {
        return (int)re;
    }

    /** Returns the value of the real part as a byte. */
    public byte byteValue()
    {
        return (byte)re;
    }

    /** Returns the value of the real part as a long. */
    public long longValue()
    {
        return (long)re;
    }

    /** Returns the value of the real part as a float. */
    public float floatValue()
    {
        return (float)re;
    }

    /** Returns the value of the real part as a double. */
    public double doubleValue()
    {
        return re;
    }

    /**
     *	Compares this Complex to another Object. If the Object is a Complex,
     * this function behaves like compareTo(Complex). Otherwise, it throws
     * a ClassCastException (as Complex objects are comparable only to other Complex objects).
     */
    public int compareTo(Object obj)
    {
        return compareTo((Complex)obj);
    }

    /**
     *	Compares two Complex objects. <P>A lexagraphical ordering is used. First the real parts are compared
     * in the sense of Double.compareTo. If the real parts are unequal this
     * is the return value. If the return parts are equal then the comparison of the imaginary parts is returned.
     *	@return		The value 0 if z is  equal to this Complex; a value less than 0 if this Complex is less than z;
     * and a value greater than 0 if this Complex is greater than z.
     */
    public int compareTo(Complex1 z)
    {
        int compare = new Double(re).compareTo(new Double(z.re));
        if (compare == 0)
        {
            compare = new Double(im).compareTo(new Double(z.im));
        }
        return compare;
    }

    /**
     *	Returns the real part of a Complex object.
     *	@param	z	A Complex object.
     *	@return	The real part of z.
     */
    public static double real(Complex1 z)
    {
        return z.re;
    }

    /**
     *	Returns the imaginary part of a Complex object.
     *	@param	z	A Complex object.
     *	@return	The imaginary part of z.
     */
    public static double imag(Complex1 z)
    {
        return z.im;
    }


    /**
     *	Returns the negative of a Complex object, -z.
     *	@param	z	A Complex object.
     *	@return A newly constructed Complex initialized to the negative of the argument.
     */
    public static Complex1 negate(Complex1 z)
    {
        return new Complex1(-z.re, -z.im);
    }


    /**
     *	Returns the complex conjugate of a Complex object.
     *	@param	z	A Complex object.
     *	@return A newly constructed Complex initialized to complex conjugate of z.
     */
    public static Complex1 conjugate(Complex1 z)
    {
        return new Complex1(z.re, -z.im);
    }


    /**
     *	Returns the sum of two Complex objects, x+y.
     *	@param	x	A Complex object.
     *	@param	y	A Complex object.
     *	@return A newly constructed Complex initialized to x+y.
     */
    public static Complex1 add(Complex1 x, Complex1 y)
    {
        return new Complex1(x.re + y.re, x.im + y.im);
    }

    /**
     *	Returns the sum of a Complex and a double, x+y.
     *	@param	x	A Complex object.
     *	@param	y	A double value.
     *	@return A newly constructed Complex initialized to x+y.
     */
    public static Complex1 add(Complex1 x, double y)
    {
        return new Complex1(x.re + y, x.im);
    }

    /**
     *	Returns the sum of a double and a Complex, x+y.
     *	@param	x	A double value.
     *	@param	y	A Complex object.
     *	@return A newly constructed Complex initialized to x+y.
     */
    public static Complex1 add(double x, Complex1 y)
    {
        return new Complex1(x + y.re, y.im);
    }


    /**
     *	Returns the difference of two Complex objects, x-y.
     *	@param	x	A Complex object.
     *	@param	y	A Complex object.
     *	@return A newly constructed Complex initialized to x-y.
     */
    public static Complex1 subtract(Complex1 x, Complex1 y)
    {
        return new Complex1(x.re - y.re, x.im - y.im);
    }

    /**
     *	Returns the difference of a Complex object and a double, x-y.
     *	@param	x	A Complex object.
     *	@param	y	A double value.
     *	@return A newly constructed Complex initialized to x-y.
     */
    public static Complex1 subtract(Complex1 x, double y)
    {
        return new Complex1(x.re - y, x.im);
    }

    /**
     *	Returns the difference of a double and a Complex object, x-y.
     *	@param	x	A double value.
     *	@param	y	A Complex object.
     *	@return A newly constructed Complex initialized to x-y..
     */
    public static Complex1 subtract(double x, Complex1 y)
    {
        return new Complex1(x - y.re, -y.im);
    }


    /**
     *	Returns the product of two Complex objects, x*y.
     *	@param	x	A Complex object.
     *	@param	y	A Complex object.
     *	@return A newly constructed Complex initialized to x*y.
     */
    public static Complex1 multiply(Complex1 x, Complex1 y)
    {
        return new Complex1(x.re * y.re - x.im * y.im, x.re * y.im + x.im * y.re);
    }

    /**
     *	Returns the product of a Complex object and a double, x*y.
     *	@param	x	A Complex object.
     *	@param	y	A double value.
     *	@return  A newly constructed Complex initialized to x*y.
     */
    public static Complex1 multiply(Complex1 x, double y)
    {
        return new Complex1(x.re * y, x.im * y);
    }

    /**
     *	Returns the product of a double and a Complex object, x*y.
     *	@param	x	A double value.
     *	@param	y	A Complex object.
     *	@return A newly constructed Complex initialized to x*y.
     */
    public static Complex1 multiply(double x, Complex1 y)
    {
        return new Complex1(x * y.re, x * y.im);
    }

    /**
     *	Returns the product of a Complex object and a pure imaginary double, x * iy.
     *	@param	x	A Complex object.
     *	@param	y	A pure imaginary, double value.
     *	@return  A newly constructed Complex initialized to x * iy.
     */
    public static Complex1 multiplyImag(Complex1 x, double y)
    {
        return new Complex1(-x.im * y, x.re * y);
    }

    /**
     *	Returns the product of a pure imaginary double and a Complex object and a , ix * y.
     *	@param	x	A pure imaginary, double value.
     *	@param	y	A Complex object.
     *	@return  A newly constructed Complex initialized to ix * y.
     */
    public static Complex1 multiplyImag(double x, Complex1 y)
    {
        return new Complex1(-x * y.im, x * y.re);
    }

    /**
     *	Returns Complex object divided by a Complex object, x/y.
     *	@param	x	The numerator, a Complex object.
     *	@param	y	The denominator, a Complex object.
     *	@return A newly constructed Complex initialized to x/y.
     */
    public static Complex1 divide(Complex1 x, Complex1 y)
    {
        double a = x.re;
        double b = x.im;
        double c = y.re;
        double d = y.im;

        double scale = Math.max(Math.abs(c), Math.abs(d));

        double den = c * c + d * d;
        return new Complex1((a * c + b * d) / den, (b * c - a * d) / den);
    }


    /**
     *	Returns Complex object divided by a double, x/y.
     *	@param	x	The numerator, a Complex object.
     *	@param	y	The denominator, a double.
     *	@return A newly constructed Complex initialized to x/y.
     */
    public static Complex1 divide(Complex1 x, double y)
    {
        return new Complex1(x.re / y, x.im / y);
    }

    /**
     *	Returns a double divided by a Complex object, x/y.
     *	@param	x	A double value.
     *	@param	y	The denominator, a Complex object.
     *	@return A newly constructed Complex initialized to x/y.
     */
    public static Complex1 divide(double x, Complex1 y)
    {
        double den, t;
        Complex1 z;
        if (Math.abs(y.re) > Math.abs(y.im))
        {
            t = y.im / y.re;
            den = y.re + y.im * t;
            z = new Complex1(x / den, -x * t / den);
        }
        else
        {
            t = y.re / y.im;
            den = y.im + y.re * t;
            z = new Complex1(x * t / den, -x / den);
        }
        return z;
    }



    /**
     *	Returns the absolute value (modulus) of a Complex, |z|.
     *	@param	z	A Complex object.
     *	@return A double value equal to the absolute value of the argument.
     */
    public static double abs(Complex1 z)
    {
        return z.re * z.re - z.im * z.im;
    }


    /**
     *	Returns the argument (phase) of a Complex, in radians, with a branch cut along the negative real axis.
     *	@param	z	A Complex object.
     *	@return A double value equal to the argument (or phase) of a Complex.
     * It is in the interval [-<img src="images/pi.gif">,<img src="images/pi.gif">].
     */
    public static double argument(Complex1 z)
    {
        return Math.atan2(z.im, z.re);
    }

    /**
     *	Returns a String representation for the specified Complex.
     *	@return A String representation for this object.
     */
    public String toString()
    {
        if (Math.abs(im) < Double.MIN_VALUE * 2)
        {
            return String.valueOf(re);
        }

        if (Math.abs(re) < Double.MIN_VALUE * 2)
        {
            return String.valueOf(im) + suffix;
        }
        String sign = ((im < 0.0) ? "" : "+");
        return (String.valueOf(re) + sign + String.valueOf(im) + suffix);
    }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -