📄 tblcmp.c
字号:
/* tblcmp - table compression routines */
/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Vern Paxson.
*
* The United States Government has rights in this work pursuant
* to contract no. DE-AC03-76SF00098 between the United States
* Department of Energy and the University of California.
*
* Redistribution and use in source and binary forms are permitted provided
* that: (1) source distributions retain this entire copyright notice and
* comment, and (2) distributions including binaries display the following
* acknowledgement: ``This product includes software developed by the
* University of California, Berkeley and its contributors'' in the
* documentation or other materials provided with the distribution and in
* all advertising materials mentioning features or use of this software.
* Neither the name of the University nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef lint
static char rcsid[] =
"@(#) $Header: c:\\program\040files\\development\\cvs\040repository/flex++/tblcmp.c,v 1.1.1.1 2002/04/13 06:01:33 Bear Exp $ (LBL)";
#endif
#include "flexdef.h"
/* declarations for functions that have forward references */
void mkentry PROTO((register int*, int, int, int, int));
void mkprot PROTO((int[], int, int));
void mktemplate PROTO((int[], int, int));
void mv2front PROTO((int));
int tbldiff PROTO((int[], int, int[]));
/* bldtbl - build table entries for dfa state
*
* synopsis
* int state[numecs], statenum, totaltrans, comstate, comfreq;
* bldtbl( state, statenum, totaltrans, comstate, comfreq );
*
* State is the statenum'th dfa state. It is indexed by equivalence class and
* gives the number of the state to enter for a given equivalence class.
* totaltrans is the total number of transitions out of the state. Comstate
* is that state which is the destination of the most transitions out of State.
* Comfreq is how many transitions there are out of State to Comstate.
*
* A note on terminology:
* "protos" are transition tables which have a high probability of
* either being redundant (a state processed later will have an identical
* transition table) or nearly redundant (a state processed later will have
* many of the same out-transitions). A "most recently used" queue of
* protos is kept around with the hope that most states will find a proto
* which is similar enough to be usable, and therefore compacting the
* output tables.
* "templates" are a special type of proto. If a transition table is
* homogeneous or nearly homogeneous (all transitions go to the same
* destination) then the odds are good that future states will also go
* to the same destination state on basically the same character set.
* These homogeneous states are so common when dealing with large rule
* sets that they merit special attention. If the transition table were
* simply made into a proto, then (typically) each subsequent, similar
* state will differ from the proto for two out-transitions. One of these
* out-transitions will be that character on which the proto does not go
* to the common destination, and one will be that character on which the
* state does not go to the common destination. Templates, on the other
* hand, go to the common state on EVERY transition character, and therefore
* cost only one difference.
*/
void bldtbl( state, statenum, totaltrans, comstate, comfreq )
int state[], statenum, totaltrans, comstate, comfreq;
{
int extptr, extrct[2][CSIZE + 1];
int mindiff, minprot, i, d;
int checkcom;
/* If extptr is 0 then the first array of extrct holds the result of the
* "best difference" to date, which is those transitions which occur in
* "state" but not in the proto which, to date, has the fewest differences
* between itself and "state". If extptr is 1 then the second array of
* extrct hold the best difference. The two arrays are toggled
* between so that the best difference to date can be kept around and
* also a difference just created by checking against a candidate "best"
* proto.
*/
extptr = 0;
/* if the state has too few out-transitions, don't bother trying to
* compact its tables
*/
if ( (totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE) )
mkentry( state, numecs, statenum, JAMSTATE, totaltrans );
else
{
/* checkcom is true if we should only check "state" against
* protos which have the same "comstate" value
*/
checkcom = comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE;
minprot = firstprot;
mindiff = totaltrans;
if ( checkcom )
{
/* find first proto which has the same "comstate" */
for ( i = firstprot; i != NIL; i = protnext[i] )
if ( protcomst[i] == comstate )
{
minprot = i;
mindiff = tbldiff( state, minprot, extrct[extptr] );
break;
}
}
else
{
/* since we've decided that the most common destination out
* of "state" does not occur with a high enough frequency,
* we set the "comstate" to zero, assuring that if this state
* is entered into the proto list, it will not be considered
* a template.
*/
comstate = 0;
if ( firstprot != NIL )
{
minprot = firstprot;
mindiff = tbldiff( state, minprot, extrct[extptr] );
}
}
/* we now have the first interesting proto in "minprot". If
* it matches within the tolerances set for the first proto,
* we don't want to bother scanning the rest of the proto list
* to see if we have any other reasonable matches.
*/
if ( mindiff * 100 > totaltrans * FIRST_MATCH_DIFF_PERCENTAGE )
{ /* not a good enough match. Scan the rest of the protos */
for ( i = minprot; i != NIL; i = protnext[i] )
{
d = tbldiff( state, i, extrct[1 - extptr] );
if ( d < mindiff )
{
extptr = 1 - extptr;
mindiff = d;
minprot = i;
}
}
}
/* check if the proto we've decided on as our best bet is close
* enough to the state we want to match to be usable
*/
if ( mindiff * 100 > totaltrans * ACCEPTABLE_DIFF_PERCENTAGE )
{
/* no good. If the state is homogeneous enough, we make a
* template out of it. Otherwise, we make a proto.
*/
if ( comfreq * 100 >= totaltrans * TEMPLATE_SAME_PERCENTAGE )
mktemplate( state, statenum, comstate );
else
{
mkprot( state, statenum, comstate );
mkentry( state, numecs, statenum, JAMSTATE, totaltrans );
}
}
else
{ /* use the proto */
mkentry( extrct[extptr], numecs, statenum,
prottbl[minprot], mindiff );
/* if this state was sufficiently different from the proto
* we built it from, make it, too, a proto
*/
if ( mindiff * 100 >= totaltrans * NEW_PROTO_DIFF_PERCENTAGE )
mkprot( state, statenum, comstate );
/* since mkprot added a new proto to the proto queue, it's possible
* that "minprot" is no longer on the proto queue (if it happened
* to have been the last entry, it would have been bumped off).
* If it's not there, then the new proto took its physical place
* (though logically the new proto is at the beginning of the
* queue), so in that case the following call will do nothing.
*/
mv2front( minprot );
}
}
}
/* cmptmps - compress template table entries
*
* synopsis
* cmptmps();
*
* template tables are compressed by using the 'template equivalence
* classes', which are collections of transition character equivalence
* classes which always appear together in templates - really meta-equivalence
* classes. until this point, the tables for templates have been stored
* up at the top end of the nxt array; they will now be compressed and have
* table entries made for them.
*/
void cmptmps()
{
int tmpstorage[CSIZE + 1];
register int *tmp = tmpstorage, i, j;
int totaltrans, trans;
peakpairs = numtemps * numecs + tblend;
if ( usemecs )
{
/* create equivalence classes base on data gathered on template
* transitions
*/
nummecs = cre8ecs( tecfwd, tecbck, numecs );
}
else
nummecs = numecs;
if ( lastdfa + numtemps + 1 >= current_max_dfas )
increase_max_dfas();
/* loop through each template */
for ( i = 1; i <= numtemps; ++i )
{
totaltrans = 0; /* number of non-jam transitions out of this template */
for ( j = 1; j <= numecs; ++j )
{
trans = tnxt[numecs * i + j];
if ( usemecs )
{
/* the absolute value of tecbck is the meta-equivalence class
* of a given equivalence class, as set up by cre8ecs
*/
if ( tecbck[j] > 0 )
{
tmp[tecbck[j]] = trans;
if ( trans > 0 )
++totaltrans;
}
}
else
{
tmp[j] = trans;
if ( trans > 0 )
++totaltrans;
}
}
/* it is assumed (in a rather subtle way) in the skeleton that
* if we're using meta-equivalence classes, the def[] entry for
* all templates is the jam template, i.e., templates never default
* to other non-jam table entries (e.g., another template)
*/
/* leave room for the jam-state after the last real state */
mkentry( tmp, nummecs, lastdfa + i + 1, JAMSTATE, totaltrans );
}
}
/* expand_nxt_chk - expand the next check arrays */
void expand_nxt_chk()
{
register int old_max = current_max_xpairs;
current_max_xpairs += MAX_XPAIRS_INCREMENT;
++num_reallocs;
nxt = reallocate_integer_array( nxt, current_max_xpairs );
chk = reallocate_integer_array( chk, current_max_xpairs );
bzero( (char *) (chk + old_max),
MAX_XPAIRS_INCREMENT * sizeof( int ) / sizeof( char ) );
}
/* find_table_space - finds a space in the table for a state to be placed
*
* synopsis
* int *state, numtrans, block_start;
* int find_table_space();
*
* block_start = find_table_space( state, numtrans );
*
* State is the state to be added to the full speed transition table.
* Numtrans is the number of out-transitions for the state.
*
* find_table_space() returns the position of the start of the first block (in
* chk) able to accommodate the state
*
* In determining if a state will or will not fit, find_table_space() must take
* into account the fact that an end-of-buffer state will be added at [0],
* and an action number will be added in [-1].
*/
int find_table_space( state, numtrans )
int *state, numtrans;
{
/* firstfree is the position of the first possible occurrence of two
* consecutive unused records in the chk and nxt arrays
*/
register int i;
register int *state_ptr, *chk_ptr;
register int *ptr_to_last_entry_in_state;
/* if there are too many out-transitions, put the state at the end of
* nxt and chk
*/
if ( numtrans > MAX_XTIONS_FULL_INTERIOR_FIT )
{
/* if table is empty, return the first available spot in chk/nxt,
* which should be 1
*/
if ( tblend < 2 )
return ( 1 );
i = tblend - numecs; /* start searching for table space near the
* end of chk/nxt arrays
*/
}
else
i = firstfree; /* start searching for table space from the
* beginning (skipping only the elements
* which will definitely not hold the new
* state)
*/
while ( 1 ) /* loops until a space is found */
{
if ( i + numecs >= current_max_xpairs )
expand_nxt_chk();
/* loops until space for end-of-buffer and action number are found */
while ( 1 )
{
if ( chk[i - 1] == 0 ) /* check for action number space */
{
if ( chk[i] == 0 ) /* check for end-of-buffer space */
break;
else
i += 2; /* since i != 0, there is no use checking to
* see if (++i) - 1 == 0, because that's the
* same as i == 0, so we skip a space
*/
}
else
++i;
if ( i + numecs >= current_max_xpairs )
expand_nxt_chk();
}
/* if we started search from the beginning, store the new firstfree for
* the next call of find_table_space()
*/
if ( numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT )
firstfree = i + 1;
/* check to see if all elements in chk (and therefore nxt) that are
* needed for the new state have not yet been taken
*/
state_ptr = &state[1];
ptr_to_last_entry_in_state = &chk[i + numecs + 1];
for ( chk_ptr = &chk[i + 1]; chk_ptr != ptr_to_last_entry_in_state;
++chk_ptr )
if ( *(state_ptr++) != 0 && *chk_ptr != 0 )
break;
if ( chk_ptr == ptr_to_last_entry_in_state )
return ( i );
else
++i;
}
}
/* inittbl - initialize transition tables
*
* synopsis
* inittbl();
*
* Initializes "firstfree" to be one beyond the end of the table. Initializes
* all "chk" entries to be zero. Note that templates are built in their
* own tbase/tdef tables. They are shifted down to be contiguous
* with the non-template entries during table generation.
*/
void inittbl()
{
register int i;
bzero( (char *) chk, current_max_xpairs * sizeof( int ) / sizeof( char ) );
tblend = 0;
firstfree = tblend + 1;
numtemps = 0;
if ( usemecs )
{
/* set up doubly-linked meta-equivalence classes
* these are sets of equivalence classes which all have identical
* transitions out of TEMPLATES
*/
tecbck[1] = NIL;
for ( i = 2; i <= numecs; ++i )
{
tecbck[i] = i - 1;
tecfwd[i - 1] = i;
}
tecfwd[numecs] = NIL;
}
}
/* mkdeftbl - make the default, "jam" table entries
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -