⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_expl.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/* * Written by J.T. Conklin <jtc@netbsd.org>. * Public domain. * * Adapted for `long double' by Ulrich Drepper <drepper@cygnus.com>. *//* * The 8087 method for the exponential function is to calculate *   exp(x) = 2^(x log2(e)) * after separating integer and fractional parts *   x log2(e) = i + f, |f| <= .5 * 2^i is immediate but f needs to be precise for long double accuracy. * Suppress range reduction error in computing f by the following. * Separate x into integer and fractional parts *   x = xi + xf, |xf| <= .5 * Separate log2(e) into the sum of an exact number c0 and small part c1. *   c0 + c1 = log2(e) to extra precision * Then *   f = (c0 xi - i) + c0 xf + c1 x * where c0 xi is exact and so also is (c0 xi - i). * -- moshier@na-net.ornl.gov */#include <math_private.h>static long double c0 = 1.44268798828125L;static long double c1 = 7.05260771340735992468e-6L;long double__ieee754_expl (long double x){  long double res;/* I added the following ugly construct because expl(+-Inf) resulted   in NaN.  The ugliness results from the bright minds at Intel.   For the i686 the code can be written better.   -- drepper@cygnus.com.  */  asm ("fxam\n\t"		/* Is NaN or +-Inf?  */       "fstsw	%%ax\n\t"       "movb	$0x45, %%dh\n\t"       "andb	%%ah, %%dh\n\t"       "cmpb	$0x05, %%dh\n\t"       "je	1f\n\t"		/* Is +-Inf, jump.    */       "fldl2e\n\t"             /* 1  log2(e)         */       "fmul %%st(1),%%st\n\t"  /* 1  x log2(e)       */       "frndint\n\t"            /* 1  i               */       "fld %%st(1)\n\t"        /* 2  x               */       "frndint\n\t"            /* 2  xi              */       "fld %%st(1)\n\t"        /* 3  i               */       "fldt %2\n\t"            /* 4  c0              */       "fld %%st(2)\n\t"        /* 5  xi              */       "fmul %%st(1),%%st\n\t"  /* 5  c0 xi           */       "fsubp %%st,%%st(2)\n\t" /* 4  f = c0 xi  - i  */       "fld %%st(4)\n\t"        /* 5  x               */       "fsub %%st(3),%%st\n\t"  /* 5  xf = x - xi     */       "fmulp %%st,%%st(1)\n\t" /* 4  c0 xf           */       "faddp %%st,%%st(1)\n\t" /* 3  f = f + c0 xf   */       "fldt %3\n\t"            /* 4                  */       "fmul %%st(4),%%st\n\t"  /* 4  c1 * x          */       "faddp %%st,%%st(1)\n\t" /* 3  f = f + c1 * x  */       "f2xm1\n\t"		/* 3 2^(fract(x * log2(e))) - 1 */       "fld1\n\t"               /* 4 1.0              */       "faddp\n\t"		/* 3 2^(fract(x * log2(e))) */       "fstp	%%st(1)\n\t"    /* 2  */       "fscale\n\t"	        /* 2 scale factor is st(1); e^x */       "fstp	%%st(1)\n\t"    /* 1  */       "fstp	%%st(1)\n\t"    /* 0  */       "jmp 2f\n\t"       "1:\ttestl	$0x200, %%eax\n\t"	/* Test sign.  */       "jz	2f\n\t"		/* If positive, jump.  */       "fstp	%%st\n\t"       "fldz\n\t"		/* Set result to 0.  */       "2:\t\n"       : "=t" (res) : "0" (x), "m" (c0), "m" (c1) : "ax", "dx");  return res;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -