⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_erfl.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* Long double expansions are  Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>  and are incorporated herein by permission of the author.  The author   reserves the right to distribute this material elsewhere under different  copying permissions.  These modifications are distributed here under   the following terms:    This library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2.1 of the License, or (at your option) any later version.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.    You should have received a copy of the GNU Lesser General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA *//* double erf(double x) * double erfc(double x) *			     x *		      2      |\ *     erf(x)  =  ---------  | exp(-t*t)dt *		   sqrt(pi) \| *			     0 * *     erfc(x) =  1-erf(x) *  Note that *		erf(-x) = -erf(x) *		erfc(-x) = 2 - erfc(x) * * Method: *	1. For |x| in [0, 0.84375] *	    erf(x)  = x + x*R(x^2) *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25] *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375] *	   Remark. The formula is derived by noting *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) *	   and that *          2/sqrt(pi) = 1.128379167095512573896158903121545171688 *	   is close to one. The interval is chosen because the fix *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is *	   near 0.6174), and by some experiment, 0.84375 is chosen to *	   guarantee the error is less than one ulp for erf. * *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and *         c = 0.84506291151 rounded to single (24 bits) *	erf(x)  = sign(x) * (c  + P1(s)/Q1(s)) *	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0 *			  1+(c+P1(s)/Q1(s))    if x < 0 *	   Remark: here we use the taylor series expansion at x=1. *		erf(1+s) = erf(1) + s*Poly(s) *			 = 0.845.. + P1(s)/Q1(s) *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] * *      3. For x in [1.25,1/0.35(~2.857143)], *	erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z)) *              z=1/x^2 *	erf(x)  = 1 - erfc(x) * *      4. For x in [1/0.35,107] *	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z)) *                             if -6.666<x<0 *			= 2.0 - tiny		(if x <= -6.666) *              z=1/x^2 *	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6.666, else *	erf(x)  = sign(x)*(1.0 - tiny) *      Note1: *	   To compute exp(-x*x-0.5625+R/S), let s be a single *	   precision number and s := x; then *		-x*x = -s*s + (s-x)*(s+x) *	        exp(-x*x-0.5626+R/S) = *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); *      Note2: *	   Here 4 and 5 make use of the asymptotic series *			  exp(-x*x) *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) *			  x*sqrt(pi) * *      5. For inf > x >= 107 *	erf(x)  = sign(x) *(1 - tiny)  (raise inexact) *	erfc(x) = tiny*tiny (raise underflow) if x > 0 *			= 2 - tiny if x<0 * *      7. Special case: *	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1, *	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, *		erfc/erf(NaN) is NaN */#include "math.h"#include "math_private.h"#ifdef __STDC__static const long double#elsestatic long double#endiftiny = 1e-4931L,  half = 0.5L,  one = 1.0L,  two = 2.0L,	/* c = (float)0.84506291151 */  erx = 0.845062911510467529296875L,/* * Coefficients for approximation to  erf on [0,0.84375] */  /* 2/sqrt(pi) - 1 */  efx = 1.2837916709551257389615890312154517168810E-1L,  /* 8 * (2/sqrt(pi) - 1) */  efx8 = 1.0270333367641005911692712249723613735048E0L,  pp[6] = {    1.122751350964552113068262337278335028553E6L,    -2.808533301997696164408397079650699163276E6L,    -3.314325479115357458197119660818768924100E5L,    -6.848684465326256109712135497895525446398E4L,    -2.657817695110739185591505062971929859314E3L,    -1.655310302737837556654146291646499062882E2L,  },  qq[6] = {    8.745588372054466262548908189000448124232E6L,    3.746038264792471129367533128637019611485E6L,    7.066358783162407559861156173539693900031E5L,    7.448928604824620999413120955705448117056E4L,    4.511583986730994111992253980546131408924E3L,    1.368902937933296323345610240009071254014E2L,    /* 1.000000000000000000000000000000000000000E0 */  },/* * Coefficients for approximation to  erf  in [0.84375,1.25] *//* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x)   -0.15625 <= x <= +.25   Peak relative error 8.5e-22  */  pa[8] = {    -1.076952146179812072156734957705102256059E0L,     1.884814957770385593365179835059971587220E2L,    -5.339153975012804282890066622962070115606E1L,     4.435910679869176625928504532109635632618E1L,     1.683219516032328828278557309642929135179E1L,    -2.360236618396952560064259585299045804293E0L,     1.852230047861891953244413872297940938041E0L,     9.394994446747752308256773044667843200719E-2L,  },  qa[7] =  {    4.559263722294508998149925774781887811255E2L,    3.289248982200800575749795055149780689738E2L,    2.846070965875643009598627918383314457912E2L,    1.398715859064535039433275722017479994465E2L,    6.060190733759793706299079050985358190726E1L,    2.078695677795422351040502569964299664233E1L,    4.641271134150895940966798357442234498546E0L,    /* 1.000000000000000000000000000000000000000E0 */  },/* * Coefficients for approximation to  erfc in [1.25,1/0.35] *//* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2))   1/2.85711669921875 < 1/x < 1/1.25   Peak relative error 3.1e-21  */    ra[] = {      1.363566591833846324191000679620738857234E-1L,      1.018203167219873573808450274314658434507E1L,      1.862359362334248675526472871224778045594E2L,      1.411622588180721285284945138667933330348E3L,      5.088538459741511988784440103218342840478E3L,      8.928251553922176506858267311750789273656E3L,      7.264436000148052545243018622742770549982E3L,      2.387492459664548651671894725748959751119E3L,      2.220916652813908085449221282808458466556E2L,    },    sa[] = {      -1.382234625202480685182526402169222331847E1L,      -3.315638835627950255832519203687435946482E2L,      -2.949124863912936259747237164260785326692E3L,      -1.246622099070875940506391433635999693661E4L,      -2.673079795851665428695842853070996219632E4L,      -2.880269786660559337358397106518918220991E4L,      -1.450600228493968044773354186390390823713E4L,      -2.874539731125893533960680525192064277816E3L,      -1.402241261419067750237395034116942296027E2L,      /* 1.000000000000000000000000000000000000000E0 */    },/* * Coefficients for approximation to  erfc in [1/.35,107] *//* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2))   1/6.6666259765625 < 1/x < 1/2.85711669921875   Peak relative error 4.2e-22  */    rb[] = {      -4.869587348270494309550558460786501252369E-5L,      -4.030199390527997378549161722412466959403E-3L,      -9.434425866377037610206443566288917589122E-2L,      -9.319032754357658601200655161585539404155E-1L,      -4.273788174307459947350256581445442062291E0L,      -8.842289940696150508373541814064198259278E0L,      -7.069215249419887403187988144752613025255E0L,      -1.401228723639514787920274427443330704764E0L,    },    sb[] = {      4.936254964107175160157544545879293019085E-3L,      1.583457624037795744377163924895349412015E-1L,      1.850647991850328356622940552450636420484E0L,      9.927611557279019463768050710008450625415E0L,      2.531667257649436709617165336779212114570E1L,      2.869752886406743386458304052862814690045E1L,      1.182059497870819562441683560749192539345E1L,      /* 1.000000000000000000000000000000000000000E0 */    },/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2))   1/107 <= 1/x <= 1/6.6666259765625   Peak relative error 1.1e-21  */    rc[] = {      -8.299617545269701963973537248996670806850E-5L,      -6.243845685115818513578933902532056244108E-3L,      -1.141667210620380223113693474478394397230E-1L,      -7.521343797212024245375240432734425789409E-1L,      -1.765321928311155824664963633786967602934E0L,      -1.029403473103215800456761180695263439188E0L,    },    sc[] = {      8.413244363014929493035952542677768808601E-3L,      2.065114333816877479753334599639158060979E-1L,      1.639064941530797583766364412782135680148E0L,      4.936788463787115555582319302981666347450E0L,      5.005177727208955487404729933261347679090E0L,      /* 1.000000000000000000000000000000000000000E0 */    };#ifdef __STDC__long double__erfl (long double x)#elselong double__erfl (x)     long double x;#endif{  long double R, S, P, Q, s, y, z, r;  int32_t ix, i;  u_int32_t se, i0, i1;  GET_LDOUBLE_WORDS (se, i0, i1, x);  ix = se & 0x7fff;  if (ix >= 0x7fff)    {				/* erf(nan)=nan */      i = ((se & 0xffff) >> 15) << 1;      return (long double) (1 - i) + one / x;	/* erf(+-inf)=+-1 */    }  ix = (ix << 16) | (i0 >> 16);  if (ix < 0x3ffed800) /* |x|<0.84375 */    {      if (ix < 0x3fde8000) /* |x|<2**-33 */	{	  if (ix < 0x00080000)	    return 0.125 * (8.0 * x + efx8 * x);	/*avoid underflow */	  return x + efx * x;	}      z = x * x;      r = pp[0] + z * (pp[1]          + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));      s = qq[0] + z * (qq[1]	  + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));      y = r / s;      return x + x * y;    }  if (ix < 0x3fffa000) /* 1.25 */    {				/* 0.84375 <= |x| < 1.25 */      s = fabsl (x) - one;      P = pa[0] + s * (pa[1] + s * (pa[2]        + s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));      Q = qa[0] + s * (qa[1] + s * (qa[2]        + s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));      if ((se & 0x8000) == 0)	return erx + P / Q;      else	return -erx - P / Q;    }  if (ix >= 0x4001d555) /* 6.6666259765625 */    {				/* inf>|x|>=6.666 */      if ((se & 0x8000) == 0)	return one - tiny;      else	return tiny - one;    }  x = fabsl (x);  s = one / (x * x);  if (ix < 0x4000b6db) /* 2.85711669921875 */    {      R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +          s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));      S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +          s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));    }  else    {				/* |x| >= 1/0.35 */      R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +         s * (rb[5] + s * (rb[6] + s * rb[7]))))));      S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +         s * (sb[5] + s * (sb[6] + s))))));    }  z = x;  GET_LDOUBLE_WORDS (i, i0, i1, z);  i1 = 0;  SET_LDOUBLE_WORDS (z, i, i0, i1);  r =    __ieee754_expl (-z * z - 0.5625) * __ieee754_expl ((z - x) * (z + x) +						     R / S);  if ((se & 0x8000) == 0)    return one - r / x;  else    return r / x - one;}weak_alias (__erfl, erfl)#ifdef NO_LONG_DOUBLEstrong_alias (__erf, __erfl)weak_alias (__erf, erfl)#endif#ifdef __STDC__     long double     __erfcl (long double x)#else     long double     __erfcl (x)     long double x;#endif{  int32_t hx, ix;  long double R, S, P, Q, s, y, z, r;  u_int32_t se, i0, i1;  GET_LDOUBLE_WORDS (se, i0, i1, x);  ix = se & 0x7fff;  if (ix >= 0x7fff)    {				/* erfc(nan)=nan */      /* erfc(+-inf)=0,2 */      return (long double) (((se & 0xffff) >> 15) << 1) + one / x;    }  ix = (ix << 16) | (i0 >> 16);  if (ix < 0x3ffed800) /* |x|<0.84375 */    {      if (ix < 0x3fbe0000) /* |x|<2**-65 */	return one - x;      z = x * x;      r = pp[0] + z * (pp[1]          + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));      s = qq[0] + z * (qq[1]	  + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));      y = r / s;      if (ix < 0x3ffd8000) /* x<1/4 */	{	  return one - (x + x * y);	}      else	{	  r = x * y;	  r += (x - half);	  return half - r;	}    }  if (ix < 0x3fffa000) /* 1.25 */    {				/* 0.84375 <= |x| < 1.25 */      s = fabsl (x) - one;      P = pa[0] + s * (pa[1] + s * (pa[2]        + s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));      Q = qa[0] + s * (qa[1] + s * (qa[2]        + s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));      if ((se & 0x8000) == 0)	{	  z = one - erx;	  return z - P / Q;	}      else	{	  z = erx + P / Q;	  return one + z;	}    }  if (ix < 0x4005d600) /* 107 */    {				/* |x|<107 */      x = fabsl (x);      s = one / (x * x);      if (ix < 0x4000b6db) /* 2.85711669921875 */	{			/* |x| < 1/.35 ~ 2.857143 */	  R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +              s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));	  S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +              s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));	}      else if (ix < 0x4001d555) /* 6.6666259765625 */	{			/* 6.666 > |x| >= 1/.35 ~ 2.857143 */	  R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +	      s * (rb[5] + s * (rb[6] + s * rb[7]))))));	  S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +              s * (sb[5] + s * (sb[6] + s))))));	}      else	{			/* |x| >= 6.666 */	  if (se & 0x8000)	    return two - tiny;	/* x < -6.666 */	  R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] +						    s * (rc[4] + s * rc[5]))));	  S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] +						    s * (sc[4] + s))));	}      z = x;      GET_LDOUBLE_WORDS (hx, i0, i1, z);      i1 = 0;      i0 &= 0xffffff00;      SET_LDOUBLE_WORDS (z, hx, i0, i1);      r = __ieee754_expl (-z * z - 0.5625) *	__ieee754_expl ((z - x) * (z + x) + R / S);      if ((se & 0x8000) == 0)	return r / x;      else	return two - r / x;    }  else    {      if ((se & 0x8000) == 0)	return tiny * tiny;      else	return two - tiny;    }}weak_alias (__erfcl, erfcl)#ifdef NO_LONG_DOUBLEstrong_alias (__erfc, __erfcl)weak_alias (__erfc, erfcl)#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -