⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_hypotl.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/* e_hypotl.c -- long double version of e_hypot.c. * Conversion to long double by Ulrich Drepper, * Cygnus Support, drepper@cygnus.com. *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */#if defined(LIBM_SCCS) && !defined(lint)static char rcsid[] = "$NetBSD: $";#endif/* __ieee754_hypotl(x,y) * * Method : *	If (assume round-to-nearest) z=x*x+y*y *	has error less than sqrt(2)/2 ulp, than *	sqrt(z) has error less than 1 ulp (exercise). * *	So, compute sqrt(x*x+y*y) with some care as *	follows to get the error below 1 ulp: * *	Assume x>y>0; *	(if possible, set rounding to round-to-nearest) *	1. if x > 2y  use *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else *	2. if x <= 2y use *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, *	y1= y with lower 32 bits chopped, y2 = y-y1. * *	NOTE: scaling may be necessary if some argument is too *	      large or too tiny * * Special cases: *	hypot(x,y) is INF if x or y is +INF or -INF; else *	hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * 	hypot(x,y) returns sqrt(x^2+y^2) with error less * 	than 1 ulps (units in the last place) */#include "math.h"#include "math_private.h"#ifdef __STDC__	long double __ieee754_hypotl(long double x, long double y)#else	long double __ieee754_hypotl(x,y)	long double x, y;#endif{	long double a,b,t1,t2,y1,y2,w;	u_int32_t j,k,ea,eb;	GET_LDOUBLE_EXP(ea,x);	ea &= 0x7fff;	GET_LDOUBLE_EXP(eb,y);	eb &= 0x7fff;	if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;}	SET_LDOUBLE_EXP(a,ea);	/* a <- |a| */	SET_LDOUBLE_EXP(b,eb);	/* b <- |b| */	if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */	k=0;	if(ea > 0x5f3f) {	/* a>2**8000 */	   if(ea == 0x7fff) {	/* Inf or NaN */	       u_int32_t exp,high,low;	       w = a+b;			/* for sNaN */	       GET_LDOUBLE_WORDS(exp,high,low,a);	       if(((high&0x7fffffff)|low)==0) w = a;	       GET_LDOUBLE_WORDS(exp,high,low,b);	       if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b;	       return w;	   }	   /* scale a and b by 2**-9600 */	   ea -= 0x2580; eb -= 0x2580;	k += 9600;	   SET_LDOUBLE_EXP(a,ea);	   SET_LDOUBLE_EXP(b,eb);	}	if(eb < 0x20bf) {	/* b < 2**-8000 */	    if(eb == 0) {	/* subnormal b or 0 */	        u_int32_t exp,high,low;		GET_LDOUBLE_WORDS(exp,high,low,b);		if((high|low)==0) return a;		SET_LDOUBLE_WORDS(t1, 0x7ffd, 0, 0);	/* t1=2^16382 */		b *= t1;		a *= t1;		k -= 16382;	    } else {		/* scale a and b by 2^9600 */	        ea += 0x2580; 	/* a *= 2^9600 */		eb += 0x2580;	/* b *= 2^9600 */		k -= 9600;		SET_LDOUBLE_EXP(a,ea);		SET_LDOUBLE_EXP(b,eb);	    }	}    /* medium size a and b */	w = a-b;	if (w>b) {	    u_int32_t high;	    GET_LDOUBLE_MSW(high,a);	    SET_LDOUBLE_WORDS(t1,ea,high,0);	    t2 = a-t1;	    w  = __ieee754_sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));	} else {	    u_int32_t high;	    GET_LDOUBLE_MSW(high,b);	    a  = a+a;	    SET_LDOUBLE_WORDS(y1,eb,high,0);	    y2 = b - y1;	    GET_LDOUBLE_MSW(high,a);	    SET_LDOUBLE_WORDS(t1,ea+1,high,0);	    t2 = a - t1;	    w  = __ieee754_sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b)));	}	if(k!=0) {	    u_int32_t exp;	    t1 = 1.0;	    GET_LDOUBLE_EXP(exp,t1);	    SET_LDOUBLE_EXP(t1,exp+k);	    return t1*w;	} else return w;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -