📄 e_j1l.c
字号:
1.642719430496086618401091544113220340094E-3L, 2.228688005300803935928733750456396149104E-2L, 1.142773760804150921573259605730018327162E-1L, 1.755576530055079253910829652698703791957E-1L, 3.218803858282095929559165965353784980613E-2L,};#ifdef __STDC__static const long double ps5[6] = {#elsestatic long double ps5[6] = {#endif 3.685108812227721334719884358034713967557E-6L, 4.069102509511177498808856515005792027639E-4L, 1.449728676496155025507893322405597039816E-2L, 2.058869213229520086582695850441194363103E-1L, 1.164890985918737148968424972072751066553E0L, 2.274776933457009446573027260373361586841E0L, /* 1.000000000000000000000000000000000000000E0L,*/};/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x) P1(x) = 1 + z^2 R(z^2), z=1/x 2.85711669921875 <= x <= 4.54541015625 Peak relative error 6.5e-21 */#ifdef __STDC__static const long double pr3[7] = {#elsestatic long double pr3[7] = {#endif 1.265251153957366716825382654273326407972E-5L, 8.031057269201324914127680782288352574567E-4L, 1.581648121115028333661412169396282881035E-2L, 1.179534658087796321928362981518645033967E-1L, 3.227936912780465219246440724502790727866E-1L, 2.559223765418386621748404398017602935764E-1L, 2.277136933287817911091370397134882441046E-2L,};#ifdef __STDC__static const long double ps3[6] = {#elsestatic long double ps3[6] = {#endif 1.079681071833391818661952793568345057548E-4L, 6.986017817100477138417481463810841529026E-3L, 1.429403701146942509913198539100230540503E-1L, 1.148392024337075609460312658938700765074E0L, 3.643663015091248720208251490291968840882E0L, 3.990702269032018282145100741746633960737E0L, /* 1.000000000000000000000000000000000000000E0L, */};/* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x) P1(x) = 1 + z^2 R(z^2), z=1/x 2 <= x <= 2.85711669921875 Peak relative error 3.5e-21 */#ifdef __STDC__static const long double pr2[7] = {#elsestatic long double pr2[7] = {#endif 2.795623248568412225239401141338714516445E-4L, 1.092578168441856711925254839815430061135E-2L, 1.278024620468953761154963591853679640560E-1L, 5.469680473691500673112904286228351988583E-1L, 8.313769490922351300461498619045639016059E-1L, 3.544176317308370086415403567097130611468E-1L, 1.604142674802373041247957048801599740644E-2L,};#ifdef __STDC__static const long double ps2[6] = {#elsestatic long double ps2[6] = {#endif 2.385605161555183386205027000675875235980E-3L, 9.616778294482695283928617708206967248579E-2L, 1.195215570959693572089824415393951258510E0L, 5.718412857897054829999458736064922974662E0L, 1.065626298505499086386584642761602177568E1L, 6.809140730053382188468983548092322151791E0L, /* 1.000000000000000000000000000000000000000E0L, */};#ifdef __STDC__static long doublepone (long double x)#elsestatic long doublepone (x) long double x;#endif{#ifdef __STDC__ const long double *p, *q;#else long double *p, *q;#endif long double z, r, s; int32_t ix; u_int32_t se, i0, i1; GET_LDOUBLE_WORDS (se, i0, i1, x); ix = se & 0x7fff; if (ix >= 0x4002) /* x >= 8 */ { p = pr8; q = ps8; } else { i1 = (ix << 16) | (i0 >> 16); if (i1 >= 0x40019174) /* x >= 4.54541015625 */ { p = pr5; q = ps5; } else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */ { p = pr3; q = ps3; } else if (ix >= 0x4000) /* x better be >= 2 */ { p = pr2; q = ps2; } } z = one / (x * x); r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6]))))); s = q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * (q[5] + z))))); return one + z * r / s;}/* For x >= 8, the asymptotic expansions of qone is * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. * We approximate pone by * qone(x) = s*(0.375 + (R/S)) *//* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), Q1(x) = z(.375 + z^2 R(z^2)), z=1/x 8 <= x <= inf Peak relative error 8.3e-22 */#ifdef __STDC__static const long double qr8[7] = {#elsestatic long double qr8[7] = {#endif -5.691925079044209246015366919809404457380E-10L, -1.632587664706999307871963065396218379137E-7L, -1.577424682764651970003637263552027114600E-5L, -6.377627959241053914770158336842725291713E-4L, -1.087408516779972735197277149494929568768E-2L, -6.854943629378084419631926076882330494217E-2L, -1.055448290469180032312893377152490183203E-1L,};#ifdef __STDC__static const long double qs8[7] = {#elsestatic long double qs8[7] = {#endif 5.550982172325019811119223916998393907513E-9L, 1.607188366646736068460131091130644192244E-6L, 1.580792530091386496626494138334505893599E-4L, 6.617859900815747303032860443855006056595E-3L, 1.212840547336984859952597488863037659161E-1L, 9.017885953937234900458186716154005541075E-1L, 2.201114489712243262000939120146436167178E0L, /* 1.000000000000000000000000000000000000000E0L, */};/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), Q1(x) = z(.375 + z^2 R(z^2)), z=1/x 4.54541015625 <= x <= 8 Peak relative error 4.1e-22 */#ifdef __STDC__static const long double qr5[7] = {#elsestatic long double qr5[7] = {#endif -6.719134139179190546324213696633564965983E-8L, -9.467871458774950479909851595678622044140E-6L, -4.429341875348286176950914275723051452838E-4L, -8.539898021757342531563866270278505014487E-3L, -6.818691805848737010422337101409276287170E-2L, -1.964432669771684034858848142418228214855E-1L, -1.333896496989238600119596538299938520726E-1L,};#ifdef __STDC__static const long double qs5[7] = {#elsestatic long double qs5[7] = {#endif 6.552755584474634766937589285426911075101E-7L, 9.410814032118155978663509073200494000589E-5L, 4.561677087286518359461609153655021253238E-3L, 9.397742096177905170800336715661091535805E-2L, 8.518538116671013902180962914473967738771E-1L, 3.177729183645800174212539541058292579009E0L, 4.006745668510308096259753538973038902990E0L, /* 1.000000000000000000000000000000000000000E0L, */};/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), Q1(x) = z(.375 + z^2 R(z^2)), z=1/x 2.85711669921875 <= x <= 4.54541015625 Peak relative error 2.2e-21 */#ifdef __STDC__static const long double qr3[7] = {#elsestatic long double qr3[7] = {#endif -3.618746299358445926506719188614570588404E-6L, -2.951146018465419674063882650970344502798E-4L, -7.728518171262562194043409753656506795258E-3L, -8.058010968753999435006488158237984014883E-2L, -3.356232856677966691703904770937143483472E-1L, -4.858192581793118040782557808823460276452E-1L, -1.592399251246473643510898335746432479373E-1L,};#ifdef __STDC__static const long double qs3[7] = {#elsestatic long double qs3[7] = {#endif 3.529139957987837084554591421329876744262E-5L, 2.973602667215766676998703687065066180115E-3L, 8.273534546240864308494062287908662592100E-2L, 9.613359842126507198241321110649974032726E-1L, 4.853923697093974370118387947065402707519E0L, 1.002671608961669247462020977417828796933E1L, 7.028927383922483728931327850683151410267E0L, /* 1.000000000000000000000000000000000000000E0L, */};/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), Q1(x) = z(.375 + z^2 R(z^2)), z=1/x 2 <= x <= 2.85711669921875 Peak relative error 6.9e-22 */#ifdef __STDC__static const long double qr2[7] = {#elsestatic long double qr2[7] = {#endif -1.372751603025230017220666013816502528318E-4L, -6.879190253347766576229143006767218972834E-3L, -1.061253572090925414598304855316280077828E-1L, -6.262164224345471241219408329354943337214E-1L, -1.423149636514768476376254324731437473915E0L, -1.087955310491078933531734062917489870754E0L, -1.826821119773182847861406108689273719137E-1L,};#ifdef __STDC__static const long double qs2[7] = {#elsestatic long double qs2[7] = {#endif 1.338768933634451601814048220627185324007E-3L, 7.071099998918497559736318523932241901810E-2L, 1.200511429784048632105295629933382142221E0L, 8.327301713640367079030141077172031825276E0L, 2.468479301872299311658145549931764426840E1L, 2.961179686096262083509383820557051621644E1L, 1.201402313144305153005639494661767354977E1L, /* 1.000000000000000000000000000000000000000E0L, */};#ifdef __STDC__static long doubleqone (long double x)#elsestatic long doubleqone (x) long double x;#endif{#ifdef __STDC__ const long double *p, *q;#else long double *p, *q;#endif static long double s, r, z; int32_t ix; u_int32_t se, i0, i1; GET_LDOUBLE_WORDS (se, i0, i1, x); ix = se & 0x7fff; if (ix >= 0x4002) /* x >= 8 */ { p = qr8; q = qs8; } else { i1 = (ix << 16) | (i0 >> 16); if (i1 >= 0x40019174) /* x >= 4.54541015625 */ { p = qr5; q = qs5; } else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */ { p = qr3; q = qs3; } else if (ix >= 0x4000) /* x better be >= 2 */ { p = qr2; q = qs2; } } z = one / (x * x); r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6]))))); s = q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * (q[5] + z * (q[6] + z)))))); return (.375 + z * r / s) / x;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -