📄 e_atan2.c
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//************************************************************************//* MODULE_NAME: atnat2.c *//* *//* FUNCTIONS: uatan2 *//* atan2Mp *//* signArctan2 *//* normalized *//* *//* FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h *//* mpatan.c mpatan2.c mpsqrt.c *//* uatan.tbl *//* *//* An ultimate atan2() routine. Given two IEEE double machine numbers y,*//* x it computes the correctly rounded (to nearest) value of atan2(y,x).*//* *//* Assumption: Machine arithmetic operations are performed in *//* round to nearest mode of IEEE 754 standard. *//* *//************************************************************************/#include "dla.h"#include "mpa.h"#include "MathLib.h"#include "uatan.tbl"#include "atnat2.h"#include "math_private.h"/************************************************************************//* An ultimate atan2 routine. Given two IEEE double machine numbers y,x *//* it computes the correctly rounded (to nearest) value of atan2(y,x). *//* Assumption: Machine arithmetic operations are performed in *//* round to nearest mode of IEEE 754 standard. *//************************************************************************/static double atan2Mp(double ,double ,const int[]);static double signArctan2(double ,double);static double normalized(double ,double,double ,double);void __mpatan2(mp_no *,mp_no *,mp_no *,int);double __ieee754_atan2(double y,double x) { int i,de,ux,dx,uy,dy;#if 0 int p;#endif static const int pr[MM]={6,8,10,20,32}; double ax,ay,u,du,u9,ua,v,vv,dv,t1,t2,t3,t4,t5,t6,t7,t8, z,zz,cor,s1,ss1,s2,ss2;#if 0 double z1,z2;#endif number num;#if 0 mp_no mperr,mpt1,mpx,mpy,mpz,mpz1,mpz2;#endif static const int ep= 59768832, /* 57*16**5 */ em=-59768832; /* -57*16**5 */ /* x=NaN or y=NaN */ num.d = x; ux = num.i[HIGH_HALF]; dx = num.i[LOW_HALF]; if ((ux&0x7ff00000) ==0x7ff00000) { if (((ux&0x000fffff)|dx)!=0x00000000) return x+x; } num.d = y; uy = num.i[HIGH_HALF]; dy = num.i[LOW_HALF]; if ((uy&0x7ff00000) ==0x7ff00000) { if (((uy&0x000fffff)|dy)!=0x00000000) return y+y; } /* y=+-0 */ if (uy==0x00000000) { if (dy==0x00000000) { if ((ux&0x80000000)==0x00000000) return ZERO; else return opi.d; } } else if (uy==0x80000000) { if (dy==0x00000000) { if ((ux&0x80000000)==0x00000000) return MZERO; else return mopi.d;} } /* x=+-0 */ if (x==ZERO) { if ((uy&0x80000000)==0x00000000) return hpi.d; else return mhpi.d; } /* x=+-INF */ if (ux==0x7ff00000) { if (dx==0x00000000) { if (uy==0x7ff00000) { if (dy==0x00000000) return qpi.d; } else if (uy==0xfff00000) { if (dy==0x00000000) return mqpi.d; } else { if ((uy&0x80000000)==0x00000000) return ZERO; else return MZERO; } } } else if (ux==0xfff00000) { if (dx==0x00000000) { if (uy==0x7ff00000) { if (dy==0x00000000) return tqpi.d; } else if (uy==0xfff00000) { if (dy==0x00000000) return mtqpi.d; } else { if ((uy&0x80000000)==0x00000000) return opi.d; else return mopi.d; } } } /* y=+-INF */ if (uy==0x7ff00000) { if (dy==0x00000000) return hpi.d; } else if (uy==0xfff00000) { if (dy==0x00000000) return mhpi.d; } /* either x/y or y/x is very close to zero */ ax = (x<ZERO) ? -x : x; ay = (y<ZERO) ? -y : y; de = (uy & 0x7ff00000) - (ux & 0x7ff00000); if (de>=ep) { return ((y>ZERO) ? hpi.d : mhpi.d); } else if (de<=em) { if (x>ZERO) { if ((z=ay/ax)<TWOM1022) return normalized(ax,ay,y,z); else return signArctan2(y,z); } else { return ((y>ZERO) ? opi.d : mopi.d); } } /* if either x or y is extremely close to zero, scale abs(x), abs(y). */ if (ax<twom500.d || ay<twom500.d) { ax*=two500.d; ay*=two500.d; } /* x,y which are neither special nor extreme */ if (ay<ax) { u=ay/ax; EMULV(ax,u,v,vv,t1,t2,t3,t4,t5) du=((ay-v)-vv)/ax; } else { u=ax/ay; EMULV(ay,u,v,vv,t1,t2,t3,t4,t5) du=((ax-v)-vv)/ay; } if (x>ZERO) { /* (i) x>0, abs(y)< abs(x): atan(ay/ax) */ if (ay<ax) { if (u<inv16.d) { v=u*u; zz=du+u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d))))); if ((z=u+(zz-u1.d*u)) == u+(zz+u1.d*u)) return signArctan2(y,z); MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8) s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d)))); ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(u,du,s2,ss2,s1,ss1,t1,t2) if ((z=s1+(ss1-u5.d*s1)) == s1+(ss1+u5.d*s1)) return signArctan2(y,z); return atan2Mp(x,y,pr); } else { i=(TWO52+TWO8*u)-TWO52; i-=16; t3=u-cij[i][0].d; EADD(t3,du,v,dv) t1=cij[i][1].d; t2=cij[i][2].d; zz=v*t2+(dv*t2+v*v*(cij[i][3].d+v*(cij[i][4].d+ v*(cij[i][5].d+v* cij[i][6].d)))); if (i<112) { if (i<48) u9=u91.d; /* u < 1/4 */ else u9=u92.d; } /* 1/4 <= u < 1/2 */ else { if (i<176) u9=u93.d; /* 1/2 <= u < 3/4 */ else u9=u94.d; } /* 3/4 <= u <= 1 */ if ((z=t1+(zz-u9*t1)) == t1+(zz+u9*t1)) return signArctan2(y,z); t1=u-hij[i][0].d; EADD(t1,du,v,vv) s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+ v*(hij[i][14].d+v* hij[i][15].d)))); ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2) MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8) ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -