⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_remainder.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//**************************************************************************//*  MODULE_NAME urem.c                                                    *//*                                                                        *//*  FUNCTION: uremainder                                                  *//*                                                                        *//* An ultimate remainder routine. Given two IEEE double machine numbers x *//* ,y   it computes the correctly rounded (to nearest) value of remainder *//* of dividing x by y.                                                    *//* Assumption: Machine arithmetic operations are performed in             *//* round to nearest mode of IEEE 754 standard.                            *//*                                                                        *//* ************************************************************************/#include "endian.h"#include "mydefs.h"#include "urem.h"#include "MathLib.h"#include "math_private.h"/**************************************************************************//* An ultimate remainder routine. Given two IEEE double machine numbers x *//* ,y   it computes the correctly rounded (to nearest) value of remainder *//**************************************************************************/double __ieee754_remainder(double x, double y){  double z,d,xx;#if 0  double yy;#endif  int4 kx,ky,n,nn,n1,m1,l;#if 0  int4 m;#endif  mynumber u,t,w={{0,0}},v={{0,0}},ww={{0,0}},r;  u.x=x;  t.x=y;  kx=u.i[HIGH_HALF]&0x7fffffff; /* no sign  for x*/  t.i[HIGH_HALF]&=0x7fffffff;   /*no sign for y */  ky=t.i[HIGH_HALF];  /*------ |x| < 2^1023  and   2^-970 < |y| < 2^1024 ------------------*/  if (kx<0x7fe00000 && ky<0x7ff00000 && ky>=0x03500000) {    if (kx+0x00100000<ky) return x;    if ((kx-0x01500000)<ky) {      z=x/t.x;      v.i[HIGH_HALF]=t.i[HIGH_HALF];      d=(z+big.x)-big.x;      xx=(x-d*v.x)-d*(t.x-v.x);      if (d-z!=0.5&&d-z!=-0.5) return (xx!=0)?xx:((x>0)?ZERO.x:nZERO.x);      else {	if (ABS(xx)>0.5*t.x) return (z>d)?xx-t.x:xx+t.x;	else return xx;      }    }   /*    (kx<(ky+0x01500000))         */    else  {      r.x=1.0/t.x;      n=t.i[HIGH_HALF];      nn=(n&0x7ff00000)+0x01400000;      w.i[HIGH_HALF]=n;      ww.x=t.x-w.x;      l=(kx-nn)&0xfff00000;      n1=ww.i[HIGH_HALF];      m1=r.i[HIGH_HALF];      while (l>0) {	r.i[HIGH_HALF]=m1-l;	z=u.x*r.x;	w.i[HIGH_HALF]=n+l;	ww.i[HIGH_HALF]=(n1)?n1+l:n1;	d=(z+big.x)-big.x;	u.x=(u.x-d*w.x)-d*ww.x;	l=(u.i[HIGH_HALF]&0x7ff00000)-nn;      }      r.i[HIGH_HALF]=m1;      w.i[HIGH_HALF]=n;      ww.i[HIGH_HALF]=n1;      z=u.x*r.x;      d=(z+big.x)-big.x;      u.x=(u.x-d*w.x)-d*ww.x;      if (ABS(u.x)<0.5*t.x) return (u.x!=0)?u.x:((x>0)?ZERO.x:nZERO.x);      else        if (ABS(u.x)>0.5*t.x) return (d>z)?u.x+t.x:u.x-t.x;        else        {z=u.x/t.x; d=(z+big.x)-big.x; return ((u.x-d*w.x)-d*ww.x);}    }  }   /*   (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000)     */  else {    if (kx<0x7fe00000&&ky<0x7ff00000&&(ky>0||t.i[LOW_HALF]!=0)) {      y=ABS(y)*t128.x;      z=__ieee754_remainder(x,y)*t128.x;      z=__ieee754_remainder(z,y)*tm128.x;      return z;    }  else {    if ((kx&0x7ff00000)==0x7fe00000&&ky<0x7ff00000&&(ky>0||t.i[LOW_HALF]!=0)) {      y=ABS(y);      z=2.0*__ieee754_remainder(0.5*x,y);      d = ABS(z);      if (d <= ABS(d-y)) return z;      else return (z>0)?z-y:z+y;    }    else { /* if x is too big */      if (kx == 0x7ff00000 && u.i[LOW_HALF] == 0 && y == 1.0)	return x / x;      if (kx>=0x7ff00000||(ky==0&&t.i[LOW_HALF]==0)||ky>0x7ff00000||	  (ky==0x7ff00000&&t.i[LOW_HALF]!=0))	return (u.i[HIGH_HALF]&0x80000000)?nNAN.x:NAN.x;      else return x;    }   }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -