⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_log.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//*********************************************************************//*                                                                   *//*      MODULE_NAME:ulog.c                                           *//*                                                                   *//*      FUNCTION:ulog                                                *//*                                                                   *//*      FILES NEEDED: dla.h endian.h mpa.h mydefs.h ulog.h           *//*                    mpexp.c mplog.c mpa.c                          *//*                    ulog.tbl                                       *//*                                                                   *//* An ultimate log routine. Given an IEEE double machine number x    *//* it computes the correctly rounded (to nearest) value of log(x).   *//* Assumption: Machine arithmetic operations are performed in        *//* round to nearest mode of IEEE 754 standard.                       *//*                                                                   *//*********************************************************************/#include "endian.h"#include "dla.h"#include "mpa.h"#include "MathLib.h"#include "math_private.h"void __mplog(mp_no *, mp_no *, int);/*********************************************************************//* An ultimate log routine. Given an IEEE double machine number x     *//* it computes the correctly rounded (to nearest) value of log(x).   *//*********************************************************************/double __ieee754_log(double x) {#define M 4  static const int pr[M]={8,10,18,32};  int i,j,n,ux,dx,p;#if 0  int k;#endif  double dbl_n,u,p0,q,r0,w,nln2a,luai,lubi,lvaj,lvbj,         sij,ssij,ttij,A,B,B0,y,y1,y2,polI,polII,sa,sb,         t1,t2,t3,t4,t5,t6,t7,t8,t,ra,rb,ww,         a0,aa0,s1,s2,ss2,s3,ss3,a1,aa1,a,aa,b,bb,c;  number num;  mp_no mpx,mpy,mpy1,mpy2,mperr;#include "ulog.tbl"#include "ulog.h"  /* Treating special values of x ( x<=0, x=INF, x=NaN etc.). */  num.d = x;  ux = num.i[HIGH_HALF];  dx = num.i[LOW_HALF];  n=0;  if (ux < 0x00100000) {    if (((ux & 0x7fffffff) | dx) == 0)  return MHALF/ZERO; /* return -INF */    if (ux < 0) return (x-x)/ZERO;                         /* return NaN  */    n -= 54;    x *= two54.d;                              /* scale x     */    num.d = x;  }  if (ux >= 0x7ff00000) return x+x;                        /* INF or NaN  */  /* Regular values of x */  w = x-ONE;  if (ABS(w) > U03) { goto case_03; }  /*--- Stage I, the case abs(x-1) < 0.03 */  t8 = MHALF*w;  EMULV(t8,w,a,aa,t1,t2,t3,t4,t5)  EADD(w,a,b,bb)  /* Evaluate polynomial II */  polII = (b0.d+w*(b1.d+w*(b2.d+w*(b3.d+w*(b4.d+          w*(b5.d+w*(b6.d+w*(b7.d+w*b8.d))))))))*w*w*w;  c = (aa+bb)+polII;  /* End stage I, case abs(x-1) < 0.03 */  if ((y=b+(c+b*E2)) == b+(c-b*E2))  return y;  /*--- Stage II, the case abs(x-1) < 0.03 */  a = d11.d+w*(d12.d+w*(d13.d+w*(d14.d+w*(d15.d+w*(d16.d+            w*(d17.d+w*(d18.d+w*(d19.d+w*d20.d))))))));  EMULV(w,a,s2,ss2,t1,t2,t3,t4,t5)  ADD2(d10.d,dd10.d,s2,ss2,s3,ss3,t1,t2)  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(d9.d,dd9.d,s2,ss2,s3,ss3,t1,t2)  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(d8.d,dd8.d,s2,ss2,s3,ss3,t1,t2)  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(d7.d,dd7.d,s2,ss2,s3,ss3,t1,t2)  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(d6.d,dd6.d,s2,ss2,s3,ss3,t1,t2)  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(d5.d,dd5.d,s2,ss2,s3,ss3,t1,t2)  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(d4.d,dd4.d,s2,ss2,s3,ss3,t1,t2)  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(d3.d,dd3.d,s2,ss2,s3,ss3,t1,t2)  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(d2.d,dd2.d,s2,ss2,s3,ss3,t1,t2)  MUL2(w,ZERO,s3,ss3,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  MUL2(w,ZERO,s2,ss2,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(w,ZERO,    s3,ss3, b, bb,t1,t2)  /* End stage II, case abs(x-1) < 0.03 */  if ((y=b+(bb+b*E4)) == b+(bb-b*E4))  return y;  goto stage_n;  /*--- Stage I, the case abs(x-1) > 0.03 */  case_03:  /* Find n,u such that x = u*2**n,   1/sqrt(2) < u < sqrt(2)  */  n += (num.i[HIGH_HALF] >> 20) - 1023;  num.i[HIGH_HALF] = (num.i[HIGH_HALF] & 0x000fffff) | 0x3ff00000;  if (num.d > SQRT_2) { num.d *= HALF;  n++; }  u = num.d;  dbl_n = (double) n;  /* Find i such that ui=1+(i-75)/2**8 is closest to u (i= 0,1,2,...,181) */  num.d += h1.d;  i = (num.i[HIGH_HALF] & 0x000fffff) >> 12;  /* Find j such that vj=1+(j-180)/2**16 is closest to v=u/ui (j= 0,...,361) */  num.d = u*Iu[i].d + h2.d;  j = (num.i[HIGH_HALF] & 0x000fffff) >> 4;  /* Compute w=(u-ui*vj)/(ui*vj) */  p0=(ONE+(i-75)*DEL_U)*(ONE+(j-180)*DEL_V);  q=u-p0;   r0=Iu[i].d*Iv[j].d;   w=q*r0;  /* Evaluate polynomial I */  polI = w+(a2.d+a3.d*w)*w*w;  /* Add up everything */  nln2a = dbl_n*LN2A;  luai  = Lu[i][0].d;   lubi  = Lu[i][1].d;  lvaj  = Lv[j][0].d;   lvbj  = Lv[j][1].d;  EADD(luai,lvaj,sij,ssij)  EADD(nln2a,sij,A  ,ttij)  B0 = (((lubi+lvbj)+ssij)+ttij)+dbl_n*LN2B;  B  = polI+B0;  /* End stage I, case abs(x-1) >= 0.03 */  if ((y=A+(B+E1)) == A+(B-E1))  return y;  /*--- Stage II, the case abs(x-1) > 0.03 */  /* Improve the accuracy of r0 */  EMULV(p0,r0,sa,sb,t1,t2,t3,t4,t5)  t=r0*((ONE-sa)-sb);  EADD(r0,t,ra,rb)  /* Compute w */  MUL2(q,ZERO,ra,rb,w,ww,t1,t2,t3,t4,t5,t6,t7,t8)  EADD(A,B0,a0,aa0)  /* Evaluate polynomial III */  s1 = (c3.d+(c4.d+c5.d*w)*w)*w;  EADD(c2.d,s1,s2,ss2)  MUL2(s2,ss2,w,ww,s3,ss3,t1,t2,t3,t4,t5,t6,t7,t8)  MUL2(s3,ss3,w,ww,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)  ADD2(s2,ss2,w,ww,s3,ss3,t1,t2)  ADD2(s3,ss3,a0,aa0,a1,aa1,t1,t2)  /* End stage II, case abs(x-1) >= 0.03 */  if ((y=a1+(aa1+E3)) == a1+(aa1-E3)) return y;  /* Final stages. Use multi-precision arithmetic. */  stage_n:  for (i=0; i<M; i++) {    p = pr[i];    __dbl_mp(x,&mpx,p);  __dbl_mp(y,&mpy,p);    __mplog(&mpx,&mpy,p);    __dbl_mp(e[i].d,&mperr,p);    __add(&mpy,&mperr,&mpy1,p);  __sub(&mpy,&mperr,&mpy2,p);    __mp_dbl(&mpy1,&y1,p);       __mp_dbl(&mpy2,&y2,p);    if (y1==y2)   return y1;  }  return y1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -