⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dla.h

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 H
字号:
/* * IBM Accurate Mathematical Library * Written by International Business Machines Corp. * Copyright (C) 2001 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//***********************************************************************//*MODULE_NAME: dla.h                                                   *//*                                                                     *//* This file holds C language macros for 'Double Length Floating Point *//* Arithmetic'. The macros are based on the paper:                     *//* T.J.Dekker, "A floating-point Technique for extending the           *//* Available Precision", Number. Math. 18, 224-242 (1971).              *//* A Double-Length number is defined by a pair (r,s), of IEEE double    *//* precision floating point numbers that satisfy,                      *//*                                                                     *//*              abs(s) <= abs(r+s)*2**(-53)/(1+2**(-53)).              *//*                                                                     *//* The computer arithmetic assumed is IEEE double precision in         *//* round to nearest mode. All variables in the macros must be of type  *//* IEEE double.                                                        *//***********************************************************************//* CN = 1+2**27 = '41a0000002000000' IEEE double format */#define  CN   134217729.0/* Exact addition of two single-length floating point numbers, Dekker. *//* The macro produces a double-length number (z,zz) that satisfies     *//* z+zz = x+y exactly.                                                 */#define  EADD(x,y,z,zz)  \           z=(x)+(y);  zz=(ABS(x)>ABS(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));/* Exact subtraction of two single-length floating point numbers, Dekker. *//* The macro produces a double-length number (z,zz) that satisfies        *//* z+zz = x-y exactly.                                                    */#define  ESUB(x,y,z,zz)  \           z=(x)-(y);  zz=(ABS(x)>ABS(y)) ? (((x)-(z))-(y)) : ((x)-((y)+(z)));/* Exact multiplication of two single-length floating point numbers,   *//* Veltkamp. The macro produces a double-length number (z,zz) that     *//* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary           *//* storage variables of type double.                                   */#define  EMULV(x,y,z,zz,p,hx,tx,hy,ty)          \           p=CN*(x);  hx=((x)-p)+p;  tx=(x)-hx; \           p=CN*(y);  hy=((y)-p)+p;  ty=(y)-hy; \           z=(x)*(y); zz=(((hx*hy-z)+hx*ty)+tx*hy)+tx*ty;/* Exact multiplication of two single-length floating point numbers, Dekker. *//* The macro produces a nearly double-length number (z,zz) (see Dekker)      *//* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary          *//* storage variables of type double.                                         */#define  MUL12(x,y,z,zz,p,hx,tx,hy,ty,q)        \           p=CN*(x);  hx=((x)-p)+p;  tx=(x)-hx; \           p=CN*(y);  hy=((y)-p)+p;  ty=(y)-hy; \           p=hx*hy;  q=hx*ty+tx*hy; z=p+q;  zz=((p-z)+q)+tx*ty;/* Double-length addition, Dekker. The macro produces a double-length   *//* number (z,zz) which satisfies approximately   z+zz = x+xx + y+yy.    *//* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy)       *//* are assumed to be double-length numbers. r,s are temporary           *//* storage variables of type double.                                    */#define  ADD2(x,xx,y,yy,z,zz,r,s)                    \           r=(x)+(y);  s=(ABS(x)>ABS(y)) ?           \                       (((((x)-r)+(y))+(yy))+(xx)) : \                       (((((y)-r)+(x))+(xx))+(yy));  \           z=r+s;  zz=(r-z)+s;/* Double-length subtraction, Dekker. The macro produces a double-length  *//* number (z,zz) which satisfies approximately   z+zz = x+xx - (y+yy).    *//* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy)         *//* are assumed to be double-length numbers. r,s are temporary             *//* storage variables of type double.                                      */#define  SUB2(x,xx,y,yy,z,zz,r,s)                    \           r=(x)-(y);  s=(ABS(x)>ABS(y)) ?           \                       (((((x)-r)-(y))-(yy))+(xx)) : \                       ((((x)-((y)+r))+(xx))-(yy));  \           z=r+s;  zz=(r-z)+s;/* Double-length multiplication, Dekker. The macro produces a double-length  *//* number (z,zz) which satisfies approximately   z+zz = (x+xx)*(y+yy).       *//* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy)               *//* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are         *//* temporary storage variables of type double.                               */#define  MUL2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc)  \           MUL12(x,y,c,cc,p,hx,tx,hy,ty,q)          \           cc=((x)*(yy)+(xx)*(y))+cc;   z=c+cc;   zz=(c-z)+cc;/* Double-length division, Dekker. The macro produces a double-length        *//* number (z,zz) which satisfies approximately   z+zz = (x+xx)/(y+yy).       *//* An error bound: abs((x+xx)/(y+yy))*1.50e-31. (x,xx), (y,yy)               *//* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc,u,uu        *//* are temporary storage variables of type double.                           */#define  DIV2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc,u,uu)  \           c=(x)/(y);   MUL12(c,y,u,uu,p,hx,tx,hy,ty,q)  \           cc=(((((x)-u)-uu)+(xx))-c*(yy))/(y);   z=c+cc;   zz=(c-z)+cc;/* Double-length addition, slower but more accurate than ADD2.               *//* The macro produces a double-length                                        *//* number (z,zz) which satisfies approximately   z+zz = (x+xx)+(y+yy).       *//* An error bound: abs(x+xx + y+yy)*1.50e-31. (x,xx), (y,yy)                 *//* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w                 *//* are temporary storage variables of type double.                           */#define  ADD2A(x,xx,y,yy,z,zz,r,rr,s,ss,u,uu,w)                        \           r=(x)+(y);                                                  \           if (ABS(x)>ABS(y)) { rr=((x)-r)+(y);  s=(rr+(yy))+(xx); }   \           else               { rr=((y)-r)+(x);  s=(rr+(xx))+(yy); }   \           if (rr!=0.0) {                                              \             z=r+s;  zz=(r-z)+s; }                                     \           else {                                                      \             ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)+(yy)) : (((yy)-s)+(xx)); \             u=r+s;                                                    \             uu=(ABS(r)>ABS(s))   ? ((r-u)+s)   : ((s-u)+r)  ;         \             w=uu+ss;  z=u+w;                                          \             zz=(ABS(u)>ABS(w))   ? ((u-z)+w)   : ((w-z)+u)  ; }/* Double-length subtraction, slower but more accurate than SUB2.            *//* The macro produces a double-length                                        *//* number (z,zz) which satisfies approximately   z+zz = (x+xx)-(y+yy).       *//* An error bound: abs(x+xx - (y+yy))*1.50e-31. (x,xx), (y,yy)               *//* are assumed to be double-length numbers. r,rr,s,ss,u,uu,w                 *//* are temporary storage variables of type double.                           */#define  SUB2A(x,xx,y,yy,z,zz,r,rr,s,ss,u,uu,w)                        \           r=(x)-(y);                                                  \           if (ABS(x)>ABS(y)) { rr=((x)-r)-(y);  s=(rr-(yy))+(xx); }   \           else               { rr=(x)-((y)+r);  s=(rr+(xx))-(yy); }   \           if (rr!=0.0) {                                              \             z=r+s;  zz=(r-z)+s; }                                     \           else {                                                      \             ss=(ABS(xx)>ABS(yy)) ? (((xx)-s)-(yy)) : ((xx)-((yy)+s)); \             u=r+s;                                                    \             uu=(ABS(r)>ABS(s))   ? ((r-u)+s)   : ((s-u)+r)  ;         \             w=uu+ss;  z=u+w;                                          \             zz=(ABS(u)>ABS(w))   ? ((u-z)+w)   : ((w-z)+u)  ; }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -