⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_sin.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
📖 第 1 页 / 共 3 页
字号:
  c = xx*(cs2 +xx*(cs4 + xx*cs6));  k=u.i[LOW_HALF]<<2;  sn=sincos.x[k];  ssn=sincos.x[k+1];  cs=sincos.x[k+2];  ccs=sincos.x[k+3];  y1 = (y+t22)-t22;  y2 = (y - y1)+dx;  c1 = (cs+t22)-t22;  c2=(cs-c1)+ccs;  cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c;  y=sn+c1*y1;  cor = cor+((sn-y)+c1*y1);  res=y+cor;  cor=(y-res)+cor;  cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig);  if (res == res + cor) return (x>0)?res:-res;  else {    __dubsin(ABS(x),dx,w);    cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig);    if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];  else  return __mpsin1(orig);  }}/***************************************************************************//*  Routine compute sin(x+dx)   (Double-Length number) where x in second or *//*  fourth quarter of unit circle.Routine receive also  the  original value *//* and quarter(n= 1or 3)of x for computing error of result.And if result not*//* accurate enough routine calls  mpsin1   or dubsin                       *//***************************************************************************/static double sloww2(double x, double dx, double orig, int n) {  mynumber u;  double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res;  static const double t22 = 6291456.0;  int4 k;  y=ABS(x);  u.x=big.x+y;  y=y-(u.x-big.x);  dx=(x>0)?dx:-dx;  xx=y*y;  s = y*xx*(sn3 +xx*sn5);  c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6));  k=u.i[LOW_HALF]<<2;  sn=sincos.x[k];  ssn=sincos.x[k+1];  cs=sincos.x[k+2];  ccs=sincos.x[k+3];  y1 = (y+t22)-t22;  y2 = (y - y1)+dx;  e1 = (sn+t22)-t22;  e2=(sn-e1)+ssn;  cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;  y=cs-e1*y1;  cor = cor+((cs-y)-e1*y1);  res=y+cor;  cor=(y-res)+cor;  cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig);  if (res == res + cor) return (n&2)?-res:res;  else {   __docos(ABS(x),dx,w);   cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig);   if (w[0] == w[0]+cor) return (n&2)?-w[0]:w[0];   else  return __mpsin1(orig);  }}/***************************************************************************//*  Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x   *//* is small enough to use Taylor series around zero and   (x+dx)            *//* in first or third quarter of unit circle.Routine receive also            *//* (right argument) the  original   value of x for computing error of      *//* result.And if result not accurate enough routine calls other routines    *//***************************************************************************/static double bsloww(double x,double dx, double orig,int n) {  static const double th2_36 = 206158430208.0;   /*    1.5*2**37   */  double y,x1,x2,xx,r,t,res,cor,w[2];#if 0  double a,da,xn;  union {int4 i[2]; double x;} v;#endif  x1=(x+th2_36)-th2_36;  y = aa.x*x1*x1*x1;  r=x+y;  x2=(x-x1)+dx;  xx=x*x;  t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx;  t=((x-r)+y)+t;  res=r+t;  cor = (r-res)+t;  cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24;  if (res == res + cor) return res;  else {    (x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w);    cor = (w[1]>0)? 1.000000001*w[1] + 1.1e-24 : 1.000000001*w[1] - 1.1e-24;    if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];    else return (n&1)?__mpcos1(orig):__mpsin1(orig);  }}/***************************************************************************//*  Routine compute sin(x+dx)  or cos(x+dx) (Double-Length number) where x  *//* in first or third quarter of unit circle.Routine receive also            *//* (right argument) the original  value of x for computing error of result.*//* And if result not  accurate enough routine calls  other routines         *//***************************************************************************/static double bsloww1(double x, double dx, double orig,int n) {mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; c2=(cs-c1)+ccs; cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c; y=sn+c1*y1; cor = cor+((sn-y)+c1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24; if (res == res + cor) return (x>0)?res:-res; else {   __dubsin(ABS(x),dx,w);   cor = (w[1]>0)? 1.000000005*w[1]+1.1e-24: 1.000000005*w[1]-1.1e-24;   if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];   else  return (n&1)?__mpcos1(orig):__mpsin1(orig); }}/***************************************************************************//*  Routine compute sin(x+dx)  or cos(x+dx) (Double-Length number) where x  *//* in second or fourth quarter of unit circle.Routine receive also  the     *//* original value and quarter(n= 1or 3)of x for computing error of result.  *//* And if result not accurate enough routine calls  other routines          *//***************************************************************************/static double bsloww2(double x, double dx, double orig, int n) {mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24; if (res == res + cor) return (n&2)?-res:res; else {   __docos(ABS(x),dx,w);   cor = (w[1]>0)? 1.000000005*w[1]+1.1e-24 : 1.000000005*w[1]-1.1e-24;   if (w[0] == w[0]+cor) return (n&2)?-w[0]:w[0];   else  return (n&1)?__mpsin1(orig):__mpcos1(orig); }}/************************************************************************//*  Routine compute cos(x) for  2^-27 < |x|< 0.25 by  Taylor with more   *//* precision  and if still doesn't accurate enough by mpcos   or docos  *//************************************************************************/static double cslow2(double x) {  mynumber u;  double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res;  static const double t22 = 6291456.0;  int4 k;  y=ABS(x);  u.x = big.x+y;  y = y-(u.x-big.x);  xx=y*y;  s = y*xx*(sn3 +xx*sn5);  c = xx*(cs2 +xx*(cs4 + xx*cs6));  k=u.i[LOW_HALF]<<2;  sn=sincos.x[k];  ssn=sincos.x[k+1];  cs=sincos.x[k+2];  ccs=sincos.x[k+3];  y1 = (y+t22)-t22;  y2 = y - y1;  e1 = (sn+t22)-t22;  e2=(sn-e1)+ssn;  cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;  y=cs-e1*y1;  cor = cor+((cs-y)-e1*y1);  res=y+cor;  cor=(y-res)+cor;  if (res == res+1.0005*cor)    return res;  else {    y=ABS(x);    __docos(y,0,w);    if (w[0] == w[0]+1.000000005*w[1]) return w[0];    else return __mpcos(x,0);  }}/***************************************************************************//*  Routine compute cos(x+dx) (Double-Length number) where x is small enough*//* to use Taylor series around zero and   (x+dx) .Routine receive also      *//* (right argument) the  original   value of x for computing error of      *//* result.And if result not accurate enough routine calls other routines    *//***************************************************************************/static double csloww(double x,double dx, double orig) {  static const double th2_36 = 206158430208.0;   /*    1.5*2**37   */  double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn;  union {int4 i[2]; double x;} v;  int4 n;  x1=(x+th2_36)-th2_36;  y = aa.x*x1*x1*x1;  r=x+y;  x2=(x-x1)+dx;  xx=x*x;    /* Taylor series */  t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx;  t=((x-r)+y)+t;  res=r+t;  cor = (r-res)+t;  cor = (cor>0)? 1.0005*cor+ABS(orig)*3.1e-30 : 1.0005*cor-ABS(orig)*3.1e-30;  if (res == res + cor) return res;  else {    (x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w);    cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-30 : 1.000000001*w[1] - ABS(orig)*1.1e-30;    if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];    else {      t = (orig*hpinv.x + toint.x);      xn = t - toint.x;      v.x = t;      y = (orig - xn*mp1.x) - xn*mp2.x;      n =v.i[LOW_HALF]&3;      da = xn*pp3.x;      t=y-da;      da = (y-t)-da;      y = xn*pp4.x;      a = t - y;      da = ((t-a)-y)+da;      if (n==1) {a=-a; da=-da;}      (a>0)? __dubsin(a,da,w) : __dubsin(-a,-da,w);      cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-40 : 1.000000001*w[1] - ABS(orig)*1.1e-40;      if (w[0] == w[0]+cor) return (a>0)?w[0]:-w[0];      else return __mpcos1(orig);    }  }}/***************************************************************************//*  Routine compute sin(x+dx)   (Double-Length number) where x in first or  *//*  third quarter of unit circle.Routine receive also (right argument) the  *//*  original   value of x for computing error of result.And if result not  *//* accurate enough routine calls  other routines                            *//***************************************************************************/static double csloww1(double x, double dx, double orig) {  mynumber u;  double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res;  static const double t22 = 6291456.0;  int4 k;  y=ABS(x);  u.x=big.x+y;  y=y-(u.x-big.x);  dx=(x>0)?dx:-dx;  xx=y*y;  s = y*xx*(sn3 +xx*sn5);  c = xx*(cs2 +xx*(cs4 + xx*cs6));  k=u.i[LOW_HALF]<<2;  sn=sincos.x[k];  ssn=sincos.x[k+1];  cs=sincos.x[k+2];  ccs=sincos.x[k+3];  y1 = (y+t22)-t22;  y2 = (y - y1)+dx;  c1 = (cs+t22)-t22;  c2=(cs-c1)+ccs;  cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c;  y=sn+c1*y1;  cor = cor+((sn-y)+c1*y1);  res=y+cor;  cor=(y-res)+cor;  cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig);  if (res == res + cor) return (x>0)?res:-res;  else {    __dubsin(ABS(x),dx,w);    cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig);    if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];    else  return __mpcos1(orig);  }}/***************************************************************************//*  Routine compute sin(x+dx)   (Double-Length number) where x in second or *//*  fourth quarter of unit circle.Routine receive also  the  original value *//* and quarter(n= 1or 3)of x for computing error of result.And if result not*//* accurate enough routine calls  other routines                            *//***************************************************************************/static double csloww2(double x, double dx, double orig, int n) {  mynumber u;  double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res;  static const double t22 = 6291456.0;  int4 k;  y=ABS(x);  u.x=big.x+y;  y=y-(u.x-big.x);  dx=(x>0)?dx:-dx;  xx=y*y;  s = y*xx*(sn3 +xx*sn5);  c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6));  k=u.i[LOW_HALF]<<2;  sn=sincos.x[k];  ssn=sincos.x[k+1];  cs=sincos.x[k+2];  ccs=sincos.x[k+3];  y1 = (y+t22)-t22;  y2 = (y - y1)+dx;  e1 = (sn+t22)-t22;  e2=(sn-e1)+ssn;  cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;  y=cs-e1*y1;  cor = cor+((cs-y)-e1*y1);  res=y+cor;  cor=(y-res)+cor;  cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig);  if (res == res + cor) return (n)?-res:res;  else {    __docos(ABS(x),dx,w);    cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig);    if (w[0] == w[0]+cor) return (n)?-w[0]:w[0];    else  return __mpcos1(orig);  }}weak_alias (__cos, cos)weak_alias (__sin, sin)#ifdef NO_LONG_DOUBLEstrong_alias (__sin, __sinl)weak_alias (__sin, sinl)strong_alias (__cos, __cosl)weak_alias (__cos, cosl)#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -