📄 s_sin.c
字号:
c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; c2=(cs-c1)+ccs; cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c; y=sn+c1*y1; cor = cor+((sn-y)+c1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig); if (res == res + cor) return (x>0)?res:-res; else { __dubsin(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig); if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else return __mpsin1(orig); }}/***************************************************************************//* Routine compute sin(x+dx) (Double-Length number) where x in second or *//* fourth quarter of unit circle.Routine receive also the original value *//* and quarter(n= 1or 3)of x for computing error of result.And if result not*//* accurate enough routine calls mpsin1 or dubsin *//***************************************************************************/static double sloww2(double x, double dx, double orig, int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig); if (res == res + cor) return (n&2)?-res:res; else { __docos(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig); if (w[0] == w[0]+cor) return (n&2)?-w[0]:w[0]; else return __mpsin1(orig); }}/***************************************************************************//* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x *//* is small enough to use Taylor series around zero and (x+dx) *//* in first or third quarter of unit circle.Routine receive also *//* (right argument) the original value of x for computing error of *//* result.And if result not accurate enough routine calls other routines *//***************************************************************************/static double bsloww(double x,double dx, double orig,int n) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2];#if 0 double a,da,xn; union {int4 i[2]; double x;} v;#endif x1=(x+th2_36)-th2_36; y = aa.x*x1*x1*x1; r=x+y; x2=(x-x1)+dx; xx=x*x; t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx; t=((x-r)+y)+t; res=r+t; cor = (r-res)+t; cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24; if (res == res + cor) return res; else { (x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w); cor = (w[1]>0)? 1.000000001*w[1] + 1.1e-24 : 1.000000001*w[1] - 1.1e-24; if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else return (n&1)?__mpcos1(orig):__mpsin1(orig); }}/***************************************************************************//* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x *//* in first or third quarter of unit circle.Routine receive also *//* (right argument) the original value of x for computing error of result.*//* And if result not accurate enough routine calls other routines *//***************************************************************************/static double bsloww1(double x, double dx, double orig,int n) {mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; c2=(cs-c1)+ccs; cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c; y=sn+c1*y1; cor = cor+((sn-y)+c1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24; if (res == res + cor) return (x>0)?res:-res; else { __dubsin(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-24: 1.000000005*w[1]-1.1e-24; if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else return (n&1)?__mpcos1(orig):__mpsin1(orig); }}/***************************************************************************//* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x *//* in second or fourth quarter of unit circle.Routine receive also the *//* original value and quarter(n= 1or 3)of x for computing error of result. *//* And if result not accurate enough routine calls other routines *//***************************************************************************/static double bsloww2(double x, double dx, double orig, int n) {mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+1.1e-24 : 1.0005*cor-1.1e-24; if (res == res + cor) return (n&2)?-res:res; else { __docos(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-24 : 1.000000005*w[1]-1.1e-24; if (w[0] == w[0]+cor) return (n&2)?-w[0]:w[0]; else return (n&1)?__mpsin1(orig):__mpcos1(orig); }}/************************************************************************//* Routine compute cos(x) for 2^-27 < |x|< 0.25 by Taylor with more *//* precision and if still doesn't accurate enough by mpcos or docos *//************************************************************************/static double cslow2(double x) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x = big.x+y; y = y-(u.x-big.x); xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = y - y1; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; if (res == res+1.0005*cor) return res; else { y=ABS(x); __docos(y,0,w); if (w[0] == w[0]+1.000000005*w[1]) return w[0]; else return __mpcos(x,0); }}/***************************************************************************//* Routine compute cos(x+dx) (Double-Length number) where x is small enough*//* to use Taylor series around zero and (x+dx) .Routine receive also *//* (right argument) the original value of x for computing error of *//* result.And if result not accurate enough routine calls other routines *//***************************************************************************/static double csloww(double x,double dx, double orig) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn; union {int4 i[2]; double x;} v; int4 n; x1=(x+th2_36)-th2_36; y = aa.x*x1*x1*x1; r=x+y; x2=(x-x1)+dx; xx=x*x; /* Taylor series */ t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx; t=((x-r)+y)+t; res=r+t; cor = (r-res)+t; cor = (cor>0)? 1.0005*cor+ABS(orig)*3.1e-30 : 1.0005*cor-ABS(orig)*3.1e-30; if (res == res + cor) return res; else { (x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w); cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-30 : 1.000000001*w[1] - ABS(orig)*1.1e-30; if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else { t = (orig*hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (orig - xn*mp1.x) - xn*mp2.x; n =v.i[LOW_HALF]&3; da = xn*pp3.x; t=y-da; da = (y-t)-da; y = xn*pp4.x; a = t - y; da = ((t-a)-y)+da; if (n==1) {a=-a; da=-da;} (a>0)? __dubsin(a,da,w) : __dubsin(-a,-da,w); cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-40 : 1.000000001*w[1] - ABS(orig)*1.1e-40; if (w[0] == w[0]+cor) return (a>0)?w[0]:-w[0]; else return __mpcos1(orig); } }}/***************************************************************************//* Routine compute sin(x+dx) (Double-Length number) where x in first or *//* third quarter of unit circle.Routine receive also (right argument) the *//* original value of x for computing error of result.And if result not *//* accurate enough routine calls other routines *//***************************************************************************/static double csloww1(double x, double dx, double orig) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; c1 = (cs+t22)-t22; c2=(cs-c1)+ccs; cor=(ssn+s*ccs+cs*s+c2*y+c1*y2-sn*y*dx)-sn*c; y=sn+c1*y1; cor = cor+((sn-y)+c1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig); if (res == res + cor) return (x>0)?res:-res; else { __dubsin(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig); if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else return __mpcos1(orig); }}/***************************************************************************//* Routine compute sin(x+dx) (Double-Length number) where x in second or *//* fourth quarter of unit circle.Routine receive also the original value *//* and quarter(n= 1or 3)of x for computing error of result.And if result not*//* accurate enough routine calls other routines *//***************************************************************************/static double csloww2(double x, double dx, double orig, int n) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5); c = y*dx+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+dx; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; cor = (cor>0)? 1.0005*cor+3.1e-30*ABS(orig) : 1.0005*cor-3.1e-30*ABS(orig); if (res == res + cor) return (n)?-res:res; else { __docos(ABS(x),dx,w); cor = (w[1]>0)? 1.000000005*w[1]+1.1e-30*ABS(orig) : 1.000000005*w[1]-1.1e-30*ABS(orig); if (w[0] == w[0]+cor) return (n)?-w[0]:w[0]; else return __mpcos1(orig); }}weak_alias (__cos, cos)weak_alias (__sin, sin)#ifdef NO_LONG_DOUBLEstrong_alias (__sin, __sinl)weak_alias (__sin, sinl)strong_alias (__cos, __cosl)weak_alias (__cos, cosl)#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -