⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_sin.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
📖 第 1 页 / 共 3 页
字号:
    if (xx < 0.01588) {      t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;      res = a+t;      cor = (a-res)+t;      cor = (cor>0)? 1.02*cor+1.0e-31 : 1.02*cor -1.0e-31;      return (res == res + cor)? res : csloww(a,da,x);    }    else  {      if (a>0) {m=1;t=a;db=da;}      else {m=0;t=-a;db=-da;}      u.x=big.x+t;      y=t-(u.x-big.x);      xx=y*y;      s = y + (db+y*xx*(sn3 +xx*sn5));      c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));      k=u.i[LOW_HALF]<<2;      sn=sincos.x[k];      ssn=sincos.x[k+1];      cs=sincos.x[k+2];      ccs=sincos.x[k+3];      cor=(ssn+s*ccs-sn*c)+cs*s;      res=sn+cor;      cor=(sn-res)+cor;      cor = (cor>0)? 1.035*cor+1.0e-31 : 1.035*cor-1.0e-31;      return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x);}}    /*   else  if (k < 0x400368fd)    */  else if (k < 0x419921FB ) {/* 2.426265<|x|< 105414350 */    t = (x*hpinv.x + toint.x);    xn = t - toint.x;    v.x = t;    y = (x - xn*mp1.x) - xn*mp2.x;    n =v.i[LOW_HALF]&3;    da = xn*mp3.x;    a=y-da;    da = (y-a)-da;    eps = ABS(x)*1.2e-30;    switch (n) {    case 1:    case 3:      xx = a*a;      if (n == 1) {a=-a;da=-da;}      if (xx < 0.01588) {	t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;	res = a+t;	cor = (a-res)+t;	cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps;	return (res == res + cor)? res : csloww(a,da,x);      }      else  {	if (a>0) {m=1;t=a;db=da;}	else {m=0;t=-a;db=-da;}	u.x=big.x+t;	y=t-(u.x-big.x);	xx=y*y;	s = y + (db+y*xx*(sn3 +xx*sn5));	c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));	k=u.i[LOW_HALF]<<2;	sn=sincos.x[k];	ssn=sincos.x[k+1];	cs=sincos.x[k+2];	ccs=sincos.x[k+3];	cor=(ssn+s*ccs-sn*c)+cs*s;	res=sn+cor;	cor=(sn-res)+cor;	cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps;	return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x);      }      break;  case 0:    case 2:      if (a<0) {a=-a;da=-da;}      u.x=big.x+a;      y=a-(u.x-big.x)+da;      xx=y*y;      k=u.i[LOW_HALF]<<2;      sn=sincos.x[k];      ssn=sincos.x[k+1];      cs=sincos.x[k+2];      ccs=sincos.x[k+3];      s = y + y*xx*(sn3 +xx*sn5);      c = xx*(cs2 +xx*(cs4 + xx*cs6));      cor=(ccs-s*ssn-cs*c)-sn*s;      res=cs+cor;      cor=(cs-res)+cor;      cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps;      return (res==res+cor)? ((n)?-res:res) : csloww2(a,da,x,n);           break;    }  }    /*   else  if (k <  0x419921FB )    */  else if (k < 0x42F00000 ) {    t = (x*hpinv.x + toint.x);    xn = t - toint.x;    v.x = t;    xn1 = (xn+8.0e22)-8.0e22;    xn2 = xn - xn1;    y = ((((x - xn1*mp1.x) - xn1*mp2.x)-xn2*mp1.x)-xn2*mp2.x);    n =v.i[LOW_HALF]&3;    da = xn1*pp3.x;    t=y-da;    da = (y-t)-da;    da = (da - xn2*pp3.x) -xn*pp4.x;    a = t+da;    da = (t-a)+da;    eps = 1.0e-24;    switch (n) {    case 1:    case 3:      xx = a*a;      if (n==1) {a=-a;da=-da;}      if (xx < 0.01588) {	t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da;	res = a+t;	cor = (a-res)+t;	cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps;	return (res == res + cor)? res : bsloww(a,da,x,n);      }      else  {	if (a>0) {m=1;t=a;db=da;}	else {m=0;t=-a;db=-da;}	u.x=big.x+t;	y=t-(u.x-big.x);	xx=y*y;	s = y + (db+y*xx*(sn3 +xx*sn5));	c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6));	k=u.i[LOW_HALF]<<2;	sn=sincos.x[k];	ssn=sincos.x[k+1];	cs=sincos.x[k+2];	ccs=sincos.x[k+3];	cor=(ssn+s*ccs-sn*c)+cs*s;	res=sn+cor;	cor=(sn-res)+cor;	cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps;	return (res==res+cor)? ((m)?res:-res) : bsloww1(a,da,x,n);      }      break;    case 0:    case 2:      if (a<0) {a=-a;da=-da;}      u.x=big.x+a;      y=a-(u.x-big.x)+da;      xx=y*y;      k=u.i[LOW_HALF]<<2;      sn=sincos.x[k];      ssn=sincos.x[k+1];      cs=sincos.x[k+2];      ccs=sincos.x[k+3];      s = y + y*xx*(sn3 +xx*sn5);      c = xx*(cs2 +xx*(cs4 + xx*cs6));      cor=(ccs-s*ssn-cs*c)-sn*s;      res=cs+cor;      cor=(cs-res)+cor;      cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps;      return (res==res+cor)? ((n)?-res:res) : bsloww2(a,da,x,n);      break;    }  }    /*   else  if (k <  0x42F00000 )    */  else if (k < 0x7ff00000) {/* 281474976710656 <|x| <2^1024 */    n = __branred(x,&a,&da);    switch (n) {    case 1:      if (a*a < 0.01588) return bsloww(-a,-da,x,n);      else return bsloww1(-a,-da,x,n);      break;		case 3:		  if (a*a < 0.01588) return bsloww(a,da,x,n);		  else return bsloww1(a,da,x,n);		  break;    case 0:    case 2:      return  bsloww2(a,da,x,n);      break;    }  }    /*   else  if (k <  0x7ff00000 )    */  else return x / x; /* |x| > 2^1024 */  return 0;}/************************************************************************//*  Routine compute sin(x) for  2^-26 < |x|< 0.25 by  Taylor with more   *//* precision  and if still doesn't accurate enough by mpsin   or dubsin *//************************************************************************/static double slow(double x) {static const double th2_36 = 206158430208.0;   /*    1.5*2**37   */ double y,x1,x2,xx,r,t,res,cor,w[2]; x1=(x+th2_36)-th2_36; y = aa.x*x1*x1*x1; r=x+y; x2=x-x1; xx=x*x; t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2; t=((x-r)+y)+t; res=r+t; cor = (r-res)+t; if (res == res + 1.0007*cor) return res; else {   __dubsin(ABS(x),0,w);   if (w[0] == w[0]+1.000000001*w[1]) return (x>0)?w[0]:-w[0];   else return (x>0)?__mpsin(x,0):-__mpsin(-x,0); }}/*******************************************************************************//* Routine compute sin(x) for   0.25<|x|< 0.855469 by  sincos.tbl   and Taylor *//* and if result still doesn't accurate enough by mpsin   or dubsin            *//*******************************************************************************/static double slow1(double x) {  mynumber u;  double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res;  static const double t22 = 6291456.0;  int4 k;  y=ABS(x);  u.x=big.x+y;  y=y-(u.x-big.x);  xx=y*y;  s = y*xx*(sn3 +xx*sn5);  c = xx*(cs2 +xx*(cs4 + xx*cs6));  k=u.i[LOW_HALF]<<2;  sn=sincos.x[k];          /* Data          */  ssn=sincos.x[k+1];       /*  from         */  cs=sincos.x[k+2];        /*   tables      */  ccs=sincos.x[k+3];       /*    sincos.tbl */  y1 = (y+t22)-t22;  y2 = y - y1;  c1 = (cs+t22)-t22;  c2=(cs-c1)+ccs;  cor=(ssn+s*ccs+cs*s+c2*y+c1*y2)-sn*c;  y=sn+c1*y1;  cor = cor+((sn-y)+c1*y1);  res=y+cor;  cor=(y-res)+cor;  if (res == res+1.0005*cor) return (x>0)?res:-res;  else {    __dubsin(ABS(x),0,w);    if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0];    else return (x>0)?__mpsin(x,0):-__mpsin(-x,0);  }}/**************************************************************************//*  Routine compute sin(x) for   0.855469  <|x|<2.426265  by  sincos.tbl  *//* and if result still doesn't accurate enough by mpsin   or dubsin       *//**************************************************************************/static double slow2(double x) {  mynumber u;  double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res,del;  static const double t22 = 6291456.0;  int4 k;  y=ABS(x);  y = hp0.x-y;  if (y>=0) {    u.x = big.x+y;    y = y-(u.x-big.x);    del = hp1.x;  }  else {    u.x = big.x-y;    y = -(y+(u.x-big.x));    del = -hp1.x;  }  xx=y*y;  s = y*xx*(sn3 +xx*sn5);  c = y*del+xx*(cs2 +xx*(cs4 + xx*cs6));  k=u.i[LOW_HALF]<<2;  sn=sincos.x[k];  ssn=sincos.x[k+1];  cs=sincos.x[k+2];  ccs=sincos.x[k+3];  y1 = (y+t22)-t22;  y2 = (y - y1)+del;  e1 = (sn+t22)-t22;  e2=(sn-e1)+ssn;  cor=(ccs-cs*c-e1*y2-e2*y)-sn*s;  y=cs-e1*y1;  cor = cor+((cs-y)-e1*y1);  res=y+cor;  cor=(y-res)+cor;  if (res == res+1.0005*cor) return (x>0)?res:-res;  else {    y=ABS(x)-hp0.x;    y1=y-hp1.x;    y2=(y-y1)-hp1.x;    __docos(y1,y2,w);    if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0];    else return (x>0)?__mpsin(x,0):-__mpsin(-x,0);  }}/***************************************************************************//*  Routine compute sin(x+dx) (Double-Length number) where x is small enough*//* to use Taylor series around zero and   (x+dx)                            *//* in first or third quarter of unit circle.Routine receive also            *//* (right argument) the  original   value of x for computing error of      *//* result.And if result not accurate enough routine calls mpsin1 or dubsin *//***************************************************************************/static double sloww(double x,double dx, double orig) {  static const double th2_36 = 206158430208.0;   /*    1.5*2**37   */  double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn;  union {int4 i[2]; double x;} v;  int4 n;  x1=(x+th2_36)-th2_36;  y = aa.x*x1*x1*x1;  r=x+y;  x2=(x-x1)+dx;  xx=x*x;  t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx;  t=((x-r)+y)+t;  res=r+t;  cor = (r-res)+t;  cor = (cor>0)? 1.0005*cor+ABS(orig)*3.1e-30 : 1.0005*cor-ABS(orig)*3.1e-30;  if (res == res + cor) return res;  else {    (x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w);    cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-30 : 1.000000001*w[1] - ABS(orig)*1.1e-30;    if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0];    else {      t = (orig*hpinv.x + toint.x);      xn = t - toint.x;      v.x = t;      y = (orig - xn*mp1.x) - xn*mp2.x;      n =v.i[LOW_HALF]&3;      da = xn*pp3.x;      t=y-da;      da = (y-t)-da;      y = xn*pp4.x;      a = t - y;      da = ((t-a)-y)+da;      if (n&2) {a=-a; da=-da;}      (a>0)? __dubsin(a,da,w) : __dubsin(-a,-da,w);      cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-40 : 1.000000001*w[1] - ABS(orig)*1.1e-40;      if (w[0] == w[0]+cor) return (a>0)?w[0]:-w[0];      else return __mpsin1(orig);    }  }}/***************************************************************************//*  Routine compute sin(x+dx)   (Double-Length number) where x in first or  *//*  third quarter of unit circle.Routine receive also (right argument) the  *//*  original   value of x for computing error of result.And if result not  *//* accurate enough routine calls  mpsin1   or dubsin                       *//***************************************************************************/static double sloww1(double x, double dx, double orig) {  mynumber u;  double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res;  static const double t22 = 6291456.0;  int4 k;  y=ABS(x);  u.x=big.x+y;  y=y-(u.x-big.x);  dx=(x>0)?dx:-dx;  xx=y*y;  s = y*xx*(sn3 +xx*sn5);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -