📄 s_sin.c
字号:
if (xx < 0.01588) { t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; cor = (cor>0)? 1.02*cor+1.0e-31 : 1.02*cor -1.0e-31; return (res == res + cor)? res : csloww(a,da,x); } else { if (a>0) {m=1;t=a;db=da;} else {m=0;t=-a;db=-da;} u.x=big.x+t; y=t-(u.x-big.x); xx=y*y; s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; cor = (cor>0)? 1.035*cor+1.0e-31 : 1.035*cor-1.0e-31; return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x);}} /* else if (k < 0x400368fd) */ else if (k < 0x419921FB ) {/* 2.426265<|x|< 105414350 */ t = (x*hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (x - xn*mp1.x) - xn*mp2.x; n =v.i[LOW_HALF]&3; da = xn*mp3.x; a=y-da; da = (y-a)-da; eps = ABS(x)*1.2e-30; switch (n) { case 1: case 3: xx = a*a; if (n == 1) {a=-a;da=-da;} if (xx < 0.01588) { t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps; return (res == res + cor)? res : csloww(a,da,x); } else { if (a>0) {m=1;t=a;db=da;} else {m=0;t=-a;db=-da;} u.x=big.x+t; y=t-(u.x-big.x); xx=y*y; s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps; return (res==res+cor)? ((m)?res:-res) : csloww1(a,da,x); } break; case 0: case 2: if (a<0) {a=-a;da=-da;} u.x=big.x+a; y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps; return (res==res+cor)? ((n)?-res:res) : csloww2(a,da,x,n); break; } } /* else if (k < 0x419921FB ) */ else if (k < 0x42F00000 ) { t = (x*hpinv.x + toint.x); xn = t - toint.x; v.x = t; xn1 = (xn+8.0e22)-8.0e22; xn2 = xn - xn1; y = ((((x - xn1*mp1.x) - xn1*mp2.x)-xn2*mp1.x)-xn2*mp2.x); n =v.i[LOW_HALF]&3; da = xn1*pp3.x; t=y-da; da = (y-t)-da; da = (da - xn2*pp3.x) -xn*pp4.x; a = t+da; da = (t-a)+da; eps = 1.0e-24; switch (n) { case 1: case 3: xx = a*a; if (n==1) {a=-a;da=-da;} if (xx < 0.01588) { t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + s1.x)*a - 0.5*da)*xx+da; res = a+t; cor = (a-res)+t; cor = (cor>0)? 1.02*cor+eps : 1.02*cor -eps; return (res == res + cor)? res : bsloww(a,da,x,n); } else { if (a>0) {m=1;t=a;db=da;} else {m=0;t=-a;db=-da;} u.x=big.x+t; y=t-(u.x-big.x); xx=y*y; s = y + (db+y*xx*(sn3 +xx*sn5)); c = y*db+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; cor=(ssn+s*ccs-sn*c)+cs*s; res=sn+cor; cor=(sn-res)+cor; cor = (cor>0)? 1.035*cor+eps : 1.035*cor-eps; return (res==res+cor)? ((m)?res:-res) : bsloww1(a,da,x,n); } break; case 0: case 2: if (a<0) {a=-a;da=-da;} u.x=big.x+a; y=a-(u.x-big.x)+da; xx=y*y; k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; s = y + y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); cor=(ccs-s*ssn-cs*c)-sn*s; res=cs+cor; cor=(cs-res)+cor; cor = (cor>0)? 1.025*cor+eps : 1.025*cor-eps; return (res==res+cor)? ((n)?-res:res) : bsloww2(a,da,x,n); break; } } /* else if (k < 0x42F00000 ) */ else if (k < 0x7ff00000) {/* 281474976710656 <|x| <2^1024 */ n = __branred(x,&a,&da); switch (n) { case 1: if (a*a < 0.01588) return bsloww(-a,-da,x,n); else return bsloww1(-a,-da,x,n); break; case 3: if (a*a < 0.01588) return bsloww(a,da,x,n); else return bsloww1(a,da,x,n); break; case 0: case 2: return bsloww2(a,da,x,n); break; } } /* else if (k < 0x7ff00000 ) */ else return x / x; /* |x| > 2^1024 */ return 0;}/************************************************************************//* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more *//* precision and if still doesn't accurate enough by mpsin or dubsin *//************************************************************************/static double slow(double x) {static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2]; x1=(x+th2_36)-th2_36; y = aa.x*x1*x1*x1; r=x+y; x2=x-x1; xx=x*x; t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2; t=((x-r)+y)+t; res=r+t; cor = (r-res)+t; if (res == res + 1.0007*cor) return res; else { __dubsin(ABS(x),0,w); if (w[0] == w[0]+1.000000001*w[1]) return (x>0)?w[0]:-w[0]; else return (x>0)?__mpsin(x,0):-__mpsin(-x,0); }}/*******************************************************************************//* Routine compute sin(x) for 0.25<|x|< 0.855469 by sincos.tbl and Taylor *//* and if result still doesn't accurate enough by mpsin or dubsin *//*******************************************************************************/static double slow1(double x) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); xx=y*y; s = y*xx*(sn3 +xx*sn5); c = xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; /* Data */ ssn=sincos.x[k+1]; /* from */ cs=sincos.x[k+2]; /* tables */ ccs=sincos.x[k+3]; /* sincos.tbl */ y1 = (y+t22)-t22; y2 = y - y1; c1 = (cs+t22)-t22; c2=(cs-c1)+ccs; cor=(ssn+s*ccs+cs*s+c2*y+c1*y2)-sn*c; y=sn+c1*y1; cor = cor+((sn-y)+c1*y1); res=y+cor; cor=(y-res)+cor; if (res == res+1.0005*cor) return (x>0)?res:-res; else { __dubsin(ABS(x),0,w); if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0]; else return (x>0)?__mpsin(x,0):-__mpsin(-x,0); }}/**************************************************************************//* Routine compute sin(x) for 0.855469 <|x|<2.426265 by sincos.tbl *//* and if result still doesn't accurate enough by mpsin or dubsin *//**************************************************************************/static double slow2(double x) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,e1,e2,xx,cor,res,del; static const double t22 = 6291456.0; int4 k; y=ABS(x); y = hp0.x-y; if (y>=0) { u.x = big.x+y; y = y-(u.x-big.x); del = hp1.x; } else { u.x = big.x-y; y = -(y+(u.x-big.x)); del = -hp1.x; } xx=y*y; s = y*xx*(sn3 +xx*sn5); c = y*del+xx*(cs2 +xx*(cs4 + xx*cs6)); k=u.i[LOW_HALF]<<2; sn=sincos.x[k]; ssn=sincos.x[k+1]; cs=sincos.x[k+2]; ccs=sincos.x[k+3]; y1 = (y+t22)-t22; y2 = (y - y1)+del; e1 = (sn+t22)-t22; e2=(sn-e1)+ssn; cor=(ccs-cs*c-e1*y2-e2*y)-sn*s; y=cs-e1*y1; cor = cor+((cs-y)-e1*y1); res=y+cor; cor=(y-res)+cor; if (res == res+1.0005*cor) return (x>0)?res:-res; else { y=ABS(x)-hp0.x; y1=y-hp1.x; y2=(y-y1)-hp1.x; __docos(y1,y2,w); if (w[0] == w[0]+1.000000005*w[1]) return (x>0)?w[0]:-w[0]; else return (x>0)?__mpsin(x,0):-__mpsin(-x,0); }}/***************************************************************************//* Routine compute sin(x+dx) (Double-Length number) where x is small enough*//* to use Taylor series around zero and (x+dx) *//* in first or third quarter of unit circle.Routine receive also *//* (right argument) the original value of x for computing error of *//* result.And if result not accurate enough routine calls mpsin1 or dubsin *//***************************************************************************/static double sloww(double x,double dx, double orig) { static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ double y,x1,x2,xx,r,t,res,cor,w[2],a,da,xn; union {int4 i[2]; double x;} v; int4 n; x1=(x+th2_36)-th2_36; y = aa.x*x1*x1*x1; r=x+y; x2=(x-x1)+dx; xx=x*x; t = (((((s5.x*xx + s4.x)*xx + s3.x)*xx + s2.x)*xx + bb.x)*xx + 3.0*aa.x*x1*x2)*x +aa.x*x2*x2*x2+dx; t=((x-r)+y)+t; res=r+t; cor = (r-res)+t; cor = (cor>0)? 1.0005*cor+ABS(orig)*3.1e-30 : 1.0005*cor-ABS(orig)*3.1e-30; if (res == res + cor) return res; else { (x>0)? __dubsin(x,dx,w) : __dubsin(-x,-dx,w); cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-30 : 1.000000001*w[1] - ABS(orig)*1.1e-30; if (w[0] == w[0]+cor) return (x>0)?w[0]:-w[0]; else { t = (orig*hpinv.x + toint.x); xn = t - toint.x; v.x = t; y = (orig - xn*mp1.x) - xn*mp2.x; n =v.i[LOW_HALF]&3; da = xn*pp3.x; t=y-da; da = (y-t)-da; y = xn*pp4.x; a = t - y; da = ((t-a)-y)+da; if (n&2) {a=-a; da=-da;} (a>0)? __dubsin(a,da,w) : __dubsin(-a,-da,w); cor = (w[1]>0)? 1.000000001*w[1] + ABS(orig)*1.1e-40 : 1.000000001*w[1] - ABS(orig)*1.1e-40; if (w[0] == w[0]+cor) return (a>0)?w[0]:-w[0]; else return __mpsin1(orig); } }}/***************************************************************************//* Routine compute sin(x+dx) (Double-Length number) where x in first or *//* third quarter of unit circle.Routine receive also (right argument) the *//* original value of x for computing error of result.And if result not *//* accurate enough routine calls mpsin1 or dubsin *//***************************************************************************/static double sloww1(double x, double dx, double orig) { mynumber u; double sn,ssn,cs,ccs,s,c,w[2],y,y1,y2,c1,c2,xx,cor,res; static const double t22 = 6291456.0; int4 k; y=ABS(x); u.x=big.x+y; y=y-(u.x-big.x); dx=(x>0)?dx:-dx; xx=y*y; s = y*xx*(sn3 +xx*sn5);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -