⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_log2l.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/*                                                      log2l.c *      Base 2 logarithm, 128-bit long double precision * * * * SYNOPSIS: * * long double x, y, log2l(); * * y = log2l( x ); * * * * DESCRIPTION: * * Returns the base 2 logarithm of x. * * The argument is separated into its exponent and fractional * parts.  If the exponent is between -1 and +1, the (natural) * logarithm of the fraction is approximated by * *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). * * Otherwise, setting  z = 2(x-1)/x+1), * *     log(x) = z + z^3 P(z)/Q(z). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      0.5, 2.0     100,000    2.6e-34     4.9e-35 *    IEEE     exp(+-10000)  100,000    9.6e-35     4.0e-35 * * In the tests over the interval exp(+-10000), the logarithms * of the random arguments were uniformly distributed over * [-10000, +10000]. * *//*   Cephes Math Library Release 2.2:  January, 1991   Copyright 1984, 1991 by Stephen L. Moshier   Adapted for glibc November, 2001    This library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2.1 of the License, or (at your option) any later version.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.    You should have received a copy of the GNU Lesser General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA  */#include "math.h"#include "math_private.h"/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 5.3e-37, * relative peak error spread = 2.3e-14 */static const long double P[13] ={  1.313572404063446165910279910527789794488E4L,  7.771154681358524243729929227226708890930E4L,  2.014652742082537582487669938141683759923E5L,  3.007007295140399532324943111654767187848E5L,  2.854829159639697837788887080758954924001E5L,  1.797628303815655343403735250238293741397E5L,  7.594356839258970405033155585486712125861E4L,  2.128857716871515081352991964243375186031E4L,  3.824952356185897735160588078446136783779E3L,  4.114517881637811823002128927449878962058E2L,  2.321125933898420063925789532045674660756E1L,  4.998469661968096229986658302195402690910E-1L,  1.538612243596254322971797716843006400388E-6L};static const long double Q[12] ={  3.940717212190338497730839731583397586124E4L,  2.626900195321832660448791748036714883242E5L,  7.777690340007566932935753241556479363645E5L,  1.347518538384329112529391120390701166528E6L,  1.514882452993549494932585972882995548426E6L,  1.158019977462989115839826904108208787040E6L,  6.132189329546557743179177159925690841200E5L,  2.248234257620569139969141618556349415120E5L,  5.605842085972455027590989944010492125825E4L,  9.147150349299596453976674231612674085381E3L,  9.104928120962988414618126155557301584078E2L,  4.839208193348159620282142911143429644326E1L/* 1.000000000000000000000000000000000000000E0L, */};/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), * where z = 2(x-1)/(x+1) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 1.1e-35, * relative peak error spread 1.1e-9 */static const long double R[6] ={  1.418134209872192732479751274970992665513E5L, -8.977257995689735303686582344659576526998E4L,  2.048819892795278657810231591630928516206E4L, -2.024301798136027039250415126250455056397E3L,  8.057002716646055371965756206836056074715E1L, -8.828896441624934385266096344596648080902E-1L};static const long double S[6] ={  1.701761051846631278975701529965589676574E6L, -1.332535117259762928288745111081235577029E6L,  4.001557694070773974936904547424676279307E5L, -5.748542087379434595104154610899551484314E4L,  3.998526750980007367835804959888064681098E3L, -1.186359407982897997337150403816839480438E2L/* 1.000000000000000000000000000000000000000E0L, */};static const long double/* log2(e) - 1 */LOG2EA = 4.4269504088896340735992468100189213742664595E-1L,/* sqrt(2)/2 */SQRTH = 7.071067811865475244008443621048490392848359E-1L;/* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */static long doubleneval (long double x, const long double *p, int n){  long double y;  p += n;  y = *p--;  do    {      y = y * x + *p--;    }  while (--n > 0);  return y;}/* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */static long doubledeval (long double x, const long double *p, int n){  long double y;  p += n;  y = x + *p--;  do    {      y = y * x + *p--;    }  while (--n > 0);  return y;}long double__ieee754_log2l (x)     long double x;{  long double z;  long double y;  int e;  int64_t hx, lx;/* Test for domain */  GET_LDOUBLE_WORDS64 (hx, lx, x);  if (((hx & 0x7fffffffffffffffLL) | lx) == 0)    return (-1.0L / (x - x));  if (hx < 0)    return (x - x) / (x - x);  if (hx >= 0x7fff000000000000LL)    return (x + x);/* separate mantissa from exponent *//* Note, frexp is used so that denormal numbers * will be handled properly. */  x = __frexpl (x, &e);/* logarithm using log(x) = z + z**3 P(z)/Q(z), * where z = 2(x-1)/x+1) */  if ((e > 2) || (e < -2))    {      if (x < SQRTH)	{			/* 2( 2x-1 )/( 2x+1 ) */	  e -= 1;	  z = x - 0.5L;	  y = 0.5L * z + 0.5L;	}      else	{			/*  2 (x-1)/(x+1)   */	  z = x - 0.5L;	  z -= 0.5L;	  y = 0.5L * x + 0.5L;	}      x = z / y;      z = x * x;      y = x * (z * neval (z, R, 5) / deval (z, S, 5));      goto done;    }/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */  if (x < SQRTH)    {      e -= 1;      x = 2.0 * x - 1.0L;	/*  2x - 1  */    }  else    {      x = x - 1.0L;    }  z = x * x;  y = x * (z * neval (x, P, 12) / deval (x, Q, 11));  y = y - 0.5 * z;done:/* Multiply log of fraction by log2(e) * and base 2 exponent by 1 */  z = y * LOG2EA;  z += x * LOG2EA;  z += y;  z += x;  z += e;  return (z);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -