⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_j0l.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
📖 第 1 页 / 共 3 页
字号:
  7.723745889544331153080842168958348568395E0L,  1.810726427571829798856428548102077799835E1L,  1.986460672157794440666187503833545388527E1L,  8.645503204552282306364296517220055815488E0L,  /* 1.000000000000000000000000000000000000000E0 */};/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)   Peak relative error 1.3e-36   0.3125 <= 1/x <= 0.4375  */#define NP2r3_2r7N 9static const long double P2r3_2r7N[NP2r3_2r7N + 1] = {  -1.594642785584856746358609622003310312622E-6L,  -1.323238196302221554194031733595194539794E-4L,  -3.856087818696874802689922536987100372345E-3L,  -5.113241710697777193011470733601522047399E-2L,  -3.334229537209911914449990372942022350558E-1L,  -1.075703518198127096179198549659283422832E0L,  -1.634174803414062725476343124267110981807E0L,  -1.030133247434119595616826842367268304880E0L,  -1.989811539080358501229347481000707289391E-1L,  -3.246859189246653459359775001466924610236E-3L,};#define NP2r3_2r7D 8static const long double P2r3_2r7D[NP2r3_2r7D + 1] = {  2.267936634217251403663034189684284173018E-5L,  1.918112982168673386858072491437971732237E-3L,  5.771704085468423159125856786653868219522E-2L,  8.056124451167969333717642810661498890507E-1L,  5.687897967531010276788680634413789328776E0L,  2.072596760717695491085444438270778394421E1L,  3.801722099819929988585197088613160496684E1L,  3.254620235902912339534998592085115836829E1L,  1.104847772130720331801884344645060675036E1L,  /* 1.000000000000000000000000000000000000000E0 */};/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)   Peak relative error 1.2e-35   0.4375 <= 1/x <= 0.5  */#define NP2_2r3N 8static const long double P2_2r3N[NP2_2r3N + 1] = {  -1.001042324337684297465071506097365389123E-4L,  -6.289034524673365824853547252689991418981E-3L,  -1.346527918018624234373664526930736205806E-1L,  -1.268808313614288355444506172560463315102E0L,  -5.654126123607146048354132115649177406163E0L,  -1.186649511267312652171775803270911971693E1L,  -1.094032424931998612551588246779200724257E1L,  -3.728792136814520055025256353193674625267E0L,  -3.000348318524471807839934764596331810608E-1L,};#define NP2_2r3D 8static const long double P2_2r3D[NP2_2r3D + 1] = {  1.423705538269770974803901422532055612980E-3L,  9.171476630091439978533535167485230575894E-2L,  2.049776318166637248868444600215942828537E0L,  2.068970329743769804547326701946144899583E1L,  1.025103500560831035592731539565060347709E2L,  2.528088049697570728252145557167066708284E2L,  2.992160327587558573740271294804830114205E2L,  1.540193761146551025832707739468679973036E2L,  2.779516701986912132637672140709452502650E1L,  /* 1.000000000000000000000000000000000000000E0 */};/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))   Peak relative error 2.2e-35   0 <= 1/x <= .0625  */#define NQ16_IN 10static const long double Q16_IN[NQ16_IN + 1] = {  2.343640834407975740545326632205999437469E-18L,  2.667978112927811452221176781536278257448E-15L,  1.178415018484555397390098879501969116536E-12L,  2.622049767502719728905924701288614016597E-10L,  3.196908059607618864801313380896308968673E-8L,  2.179466154171673958770030655199434798494E-6L,  8.139959091628545225221976413795645177291E-5L,  1.563900725721039825236927137885747138654E-3L,  1.355172364265825167113562519307194840307E-2L,  3.928058355906967977269780046844768588532E-2L,  1.107891967702173292405380993183694932208E-2L,};#define NQ16_ID 9static const long double Q16_ID[NQ16_ID + 1] = {  3.199850952578356211091219295199301766718E-17L,  3.652601488020654842194486058637953363918E-14L,  1.620179741394865258354608590461839031281E-11L,  3.629359209474609630056463248923684371426E-9L,  4.473680923894354600193264347733477363305E-7L,  3.106368086644715743265603656011050476736E-5L,  1.198239259946770604954664925153424252622E-3L,  2.446041004004283102372887804475767568272E-2L,  2.403235525011860603014707768815113698768E-1L,  9.491006790682158612266270665136910927149E-1L, /* 1.000000000000000000000000000000000000000E0 */ };/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))   Peak relative error 5.1e-36   0.0625 <= 1/x <= 0.125  */#define NQ8_16N 11static const long double Q8_16N[NQ8_16N + 1] = {  1.001954266485599464105669390693597125904E-17L,  7.545499865295034556206475956620160007849E-15L,  2.267838684785673931024792538193202559922E-12L,  3.561909705814420373609574999542459912419E-10L,  3.216201422768092505214730633842924944671E-8L,  1.731194793857907454569364622452058554314E-6L,  5.576944613034537050396518509871004586039E-5L,  1.051787760316848982655967052985391418146E-3L,  1.102852974036687441600678598019883746959E-2L,  5.834647019292460494254225988766702933571E-2L,  1.290281921604364618912425380717127576529E-1L,  7.598886310387075708640370806458926458301E-2L,};#define NQ8_16D 11static const long double Q8_16D[NQ8_16D + 1] = {  1.368001558508338469503329967729951830843E-16L,  1.034454121857542147020549303317348297289E-13L,  3.128109209247090744354764050629381674436E-11L,  4.957795214328501986562102573522064468671E-9L,  4.537872468606711261992676606899273588899E-7L,  2.493639207101727713192687060517509774182E-5L,  8.294957278145328349785532236663051405805E-4L,  1.646471258966713577374948205279380115839E-2L,  1.878910092770966718491814497982191447073E-1L,  1.152641605706170353727903052525652504075E0L,  3.383550240669773485412333679367792932235E0L,  3.823875252882035706910024716609908473970E0L, /* 1.000000000000000000000000000000000000000E0 */};/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))   Peak relative error 3.9e-35   0.125 <= 1/x <= 0.1875  */#define NQ5_8N 10static const long double Q5_8N[NQ5_8N + 1] = {  1.750399094021293722243426623211733898747E-13L,  6.483426211748008735242909236490115050294E-11L,  9.279430665656575457141747875716899958373E-9L,  6.696634968526907231258534757736576340266E-7L,  2.666560823798895649685231292142838188061E-5L,  6.025087697259436271271562769707550594540E-4L,  7.652807734168613251901945778921336353485E-3L,  5.226269002589406461622551452343519078905E-2L,  1.748390159751117658969324896330142895079E-1L,  2.378188719097006494782174902213083589660E-1L,  8.383984859679804095463699702165659216831E-2L,};#define NQ5_8D 10static const long double Q5_8D[NQ5_8D + 1] = {  2.389878229704327939008104855942987615715E-12L,  8.926142817142546018703814194987786425099E-10L,  1.294065862406745901206588525833274399038E-7L,  9.524139899457666250828752185212769682191E-6L,  3.908332488377770886091936221573123353489E-4L,  9.250427033957236609624199884089916836748E-3L,  1.263420066165922645975830877751588421451E-1L,  9.692527053860420229711317379861733180654E-1L,  3.937813834630430172221329298841520707954E0L,  7.603126427436356534498908111445191312181E0L,  5.670677653334105479259958485084550934305E0L, /* 1.000000000000000000000000000000000000000E0 */};/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))   Peak relative error 3.2e-35   0.1875 <= 1/x <= 0.25  */#define NQ4_5N 10static const long double Q4_5N[NQ4_5N + 1] = {  2.233870042925895644234072357400122854086E-11L,  5.146223225761993222808463878999151699792E-9L,  4.459114531468296461688753521109797474523E-7L,  1.891397692931537975547242165291668056276E-5L,  4.279519145911541776938964806470674565504E-4L,  5.275239415656560634702073291768904783989E-3L,  3.468698403240744801278238473898432608887E-2L,  1.138773146337708415188856882915457888274E-1L,  1.622717518946443013587108598334636458955E-1L,  7.249040006390586123760992346453034628227E-2L,  1.941595365256460232175236758506411486667E-3L,};#define NQ4_5D 9static const long double Q4_5D[NQ4_5D + 1] = {  3.049977232266999249626430127217988047453E-10L,  7.120883230531035857746096928889676144099E-8L,  6.301786064753734446784637919554359588859E-6L,  2.762010530095069598480766869426308077192E-4L,  6.572163250572867859316828886203406361251E-3L,  8.752566114841221958200215255461843397776E-2L,  6.487654992874805093499285311075289932664E-1L,  2.576550017826654579451615283022812801435E0L,  5.056392229924022835364779562707348096036E0L,  4.179770081068251464907531367859072157773E0L, /* 1.000000000000000000000000000000000000000E0 */};/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))   Peak relative error 1.4e-36   0.25 <= 1/x <= 0.3125  */#define NQ3r2_4N 10static const long double Q3r2_4N[NQ3r2_4N + 1] = {  6.126167301024815034423262653066023684411E-10L,  1.043969327113173261820028225053598975128E-7L,  6.592927270288697027757438170153763220190E-6L,  2.009103660938497963095652951912071336730E-4L,  3.220543385492643525985862356352195896964E-3L,  2.774405975730545157543417650436941650990E-2L,  1.258114008023826384487378016636555041129E-1L,  2.811724258266902502344701449984698323860E-1L,  2.691837665193548059322831687432415014067E-1L,  7.949087384900985370683770525312735605034E-2L,  1.229509543620976530030153018986910810747E-3L,};#define NQ3r2_4D 9static const long double Q3r2_4D[NQ3r2_4D + 1] = {  8.364260446128475461539941389210166156568E-9L,  1.451301850638956578622154585560759862764E-6L,  9.431830010924603664244578867057141839463E-5L,  3.004105101667433434196388593004526182741E-3L,  5.148157397848271739710011717102773780221E-2L,  4.901089301726939576055285374953887874895E-1L,  2.581760991981709901216967665934142240346E0L,  7.257105880775059281391729708630912791847E0L,  1.006014717326362868007913423810737369312E1L,  5.879416600465399514404064187445293212470E0L, /* 1.000000000000000000000000000000000000000E0*/};/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))   Peak relative error 3.8e-36   0.3125 <= 1/x <= 0.375  */#define NQ2r7_3r2N 9static const long double Q2r7_3r2N[NQ2r7_3r2N + 1] = {  7.584861620402450302063691901886141875454E-8L,  9.300939338814216296064659459966041794591E-6L,  4.112108906197521696032158235392604947895E-4L,  8.515168851578898791897038357239630654431E-3L,  8.971286321017307400142720556749573229058E-2L,  4.885856732902956303343015636331874194498E-1L,  1.334506268733103291656253500506406045846E0L,  1.681207956863028164179042145803851824654E0L,  8.165042692571721959157677701625853772271E-1L,  9.805848115375053300608712721986235900715E-2L,};#define NQ2r7_3r2D 9static const long double Q2r7_3r2D[NQ2r7_3r2D + 1] = {  1.035586492113036586458163971239438078160E-6L,  1.301999337731768381683593636500979713689E-4L,  5.993695702564527062553071126719088859654E-3L,  1.321184892887881883489141186815457808785E-1L,  1.528766555485015021144963194165165083312E0L,  9.561463309176490874525827051566494939295E0L,  3.203719484883967351729513662089163356911E1L,  5.497294687660930446641539152123568668447E1L,  4.391158169390578768508675452986948391118E1L,  1.347836630730048077907818943625789418378E1L, /* 1.000000000000000000000000000000000000000E0 */};/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))   Peak relative error 2.2e-35   0.375 <= 1/x <= 0.4375  */#define NQ2r3_2r7N 9static const long double Q2r3_2r7N[NQ2r3_2r7N + 1] = {  4.455027774980750211349941766420190722088E-7L,  4.031998274578520170631601850866780366466E-5L,  1.273987274325947007856695677491340636339E-3L,  1.818754543377448509897226554179659122873E-2L,  1.266748858326568264126353051352269875352E-1L,  4.327578594728723821137731555139472880414E-1L,  6.892532471436503074928194969154192615359E-1L,  4.490775818438716873422163588640262036506E-1L,  8.649615949297322440032000346117031581572E-2L,  7.261345286655345047417257611469066147561E-4L,};#define NQ2r3_2r7D 8static const long double Q2r3_2r7D[NQ2r3_2r7D + 1] = {  6.082600739680555266312417978064954793142E-6L,  5.693622538165494742945717226571441747567E-4L,  1.901625907009092204458328768129666975975E-2L,  2.958689532697857335456896889409923371570E-1L,  2.343124711045660081603809437993368799568E0L,  9.665894032187458293568704885528192804376E0L,  2.035273104990617136065743426322454881353E1L,  2.044102010478792896815088858740075165531E1L,  8.445937177863155827844146643468706599304E0L, /* 1.000000000000000000000000000000000000000E0 */};/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))   Peak relative error 3.1e-36   0.4375 <= 1/x <= 0.5  */#define NQ2_2r3N 9static const long double Q2_2r3N[NQ2_2r3N + 1] = {  2.817566786579768804844367382809101929314E-6L,  2.122772176396691634147024348373539744935E-4L,  5.501378031780457828919593905395747517585E-3L,  6.355374424341762686099147452020466524659E-2L,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -