⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_asinl.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//*  Long double expansions are  Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>  and are incorporated herein by permission of the author.  The author   reserves the right to distribute this material elsewhere under different   copying permissions.  These modifications are distributed here under the   following terms:    This library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2.1 of the License, or (at your option) any later version.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.    You should have received a copy of the GNU Lesser General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA *//* __ieee754_asin(x) * Method : *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... *	we approximate asin(x) on [0,0.5] by *		asin(x) = x + x*x^2*R(x^2) *      Between .5 and .625 the approximation is *              asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) *	For x in [0.625,1] *		asin(x) = pi/2-2*asin(sqrt((1-x)/2)) *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; *	then for x>0.98 *		asin(x) = pi/2 - 2*(s+s*z*R(z)) *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) *	For x<=0.98, let pio4_hi = pio2_hi/2, then *		f = hi part of s; *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z) *	and *		asin(x) = pi/2 - 2*(s+s*z*R(z)) *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: *	if x is NaN, return x itself; *	if |x|>1, return NaN with invalid signal. * */#include "math.h"#include "math_private.h"long double sqrtl (long double);#ifdef __STDC__static const long double#elsestatic long double#endif  one = 1.0L,  huge = 1.0e+4932L,  pio2_hi = 1.5707963267948966192313216916397514420986L,  pio2_lo = 4.3359050650618905123985220130216759843812E-35L,  pio4_hi = 7.8539816339744830961566084581987569936977E-1L,	/* coefficient for R(x^2) */  /* asin(x) = x + x^3 pS(x^2) / qS(x^2)     0 <= x <= 0.5     peak relative error 1.9e-35  */  pS0 = -8.358099012470680544198472400254596543711E2L,  pS1 =  3.674973957689619490312782828051860366493E3L,  pS2 = -6.730729094812979665807581609853656623219E3L,  pS3 =  6.643843795209060298375552684423454077633E3L,  pS4 = -3.817341990928606692235481812252049415993E3L,  pS5 =  1.284635388402653715636722822195716476156E3L,  pS6 = -2.410736125231549204856567737329112037867E2L,  pS7 =  2.219191969382402856557594215833622156220E1L,  pS8 = -7.249056260830627156600112195061001036533E-1L,  pS9 =  1.055923570937755300061509030361395604448E-3L,  qS0 = -5.014859407482408326519083440151745519205E3L,  qS1 =  2.430653047950480068881028451580393430537E4L,  qS2 = -4.997904737193653607449250593976069726962E4L,  qS3 =  5.675712336110456923807959930107347511086E4L,  qS4 = -3.881523118339661268482937768522572588022E4L,  qS5 =  1.634202194895541569749717032234510811216E4L,  qS6 = -4.151452662440709301601820849901296953752E3L,  qS7 =  5.956050864057192019085175976175695342168E2L,  qS8 = -4.175375777334867025769346564600396877176E1L,  /* 1.000000000000000000000000000000000000000E0 */  /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)     -0.0625 <= x <= 0.0625     peak relative error 3.3e-35  */  rS0 = -5.619049346208901520945464704848780243887E0L,  rS1 =  4.460504162777731472539175700169871920352E1L,  rS2 = -1.317669505315409261479577040530751477488E2L,  rS3 =  1.626532582423661989632442410808596009227E2L,  rS4 = -3.144806644195158614904369445440583873264E1L,  rS5 = -9.806674443470740708765165604769099559553E1L,  rS6 =  5.708468492052010816555762842394927806920E1L,  rS7 =  1.396540499232262112248553357962639431922E1L,  rS8 = -1.126243289311910363001762058295832610344E1L,  rS9 = -4.956179821329901954211277873774472383512E-1L,  rS10 =  3.313227657082367169241333738391762525780E-1L,  sS0 = -4.645814742084009935700221277307007679325E0L,  sS1 =  3.879074822457694323970438316317961918430E1L,  sS2 = -1.221986588013474694623973554726201001066E2L,  sS3 =  1.658821150347718105012079876756201905822E2L,  sS4 = -4.804379630977558197953176474426239748977E1L,  sS5 = -1.004296417397316948114344573811562952793E2L,  sS6 =  7.530281592861320234941101403870010111138E1L,  sS7 =  1.270735595411673647119592092304357226607E1L,  sS8 = -1.815144839646376500705105967064792930282E1L,  sS9 = -7.821597334910963922204235247786840828217E-2L,  /*  1.000000000000000000000000000000000000000E0 */ asinr5625 =  5.9740641664535021430381036628424864397707E-1L;#ifdef __STDC__long double__ieee754_asinl (long double x)#elsedouble__ieee754_asinl (x)     long double x;#endif{  long double t, w, p, q, c, r, s;  int32_t ix, sign, flag;  ieee854_long_double_shape_type u;  flag = 0;  u.value = x;  sign = u.parts32.w0;  ix = sign & 0x7fffffff;  u.parts32.w0 = ix;    /* |x| */  if (ix >= 0x3fff0000)	/* |x|>= 1 */    {      if (ix == 0x3fff0000	  && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)	/* asin(1)=+-pi/2 with inexact */	return x * pio2_hi + x * pio2_lo;      return (x - x) / (x - x);	/* asin(|x|>1) is NaN */    }  else if (ix < 0x3ffe0000) /* |x| < 0.5 */    {      if (ix < 0x3fc60000) /* |x| < 2**-57 */	{	  if (huge + x > one)	    return x;		/* return x with inexact if x!=0 */	}      else	{	  t = x * x;	  /* Mark to use pS, qS later on.  */	  flag = 1;	}    }  else if (ix < 0x3ffe4000) /* 0.625 */    {      t = u.value - 0.5625;      p = ((((((((((rS10 * t		    + rS9) * t		   + rS8) * t		  + rS7) * t		 + rS6) * t		+ rS5) * t	       + rS4) * t	      + rS3) * t	     + rS2) * t	    + rS1) * t	   + rS0) * t;      q = ((((((((( t		    + sS9) * t		  + sS8) * t		 + sS7) * t		+ sS6) * t	       + sS5) * t	      + sS4) * t	     + sS3) * t	    + sS2) * t	   + sS1) * t	+ sS0;      t = asinr5625 + p / q;      if ((sign & 0x80000000) == 0)	return t;      else	return -t;    }  else    {      /* 1 > |x| >= 0.625 */      w = one - u.value;      t = w * 0.5;    }  p = (((((((((pS9 * t	       + pS8) * t	      + pS7) * t	     + pS6) * t	    + pS5) * t	   + pS4) * t	  + pS3) * t	 + pS2) * t	+ pS1) * t       + pS0) * t;  q = (((((((( t	      + qS8) * t	     + qS7) * t	    + qS6) * t	   + qS5) * t	  + qS4) * t	 + qS3) * t	+ qS2) * t       + qS1) * t    + qS0;  if (flag) /* 2^-57 < |x| < 0.5 */    {      w = p / q;      return x + x * w;    }  s = __ieee754_sqrtl (t);  if (ix >= 0x3ffef333) /* |x| > 0.975 */    {      w = p / q;      t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);    }  else    {      u.value = s;      u.parts32.w3 = 0;      u.parts32.w2 = 0;      w = u.value;      c = (t - w * w) / (s + w);      r = p / q;      p = 2.0 * s * r - (pio2_lo - 2.0 * c);      q = pio4_hi - 2.0 * w;      t = pio4_hi - (p - q);    }  if ((sign & 0x80000000) == 0)    return t;  else    return -t;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -