⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_lgammal_r.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
📖 第 1 页 / 共 3 页
字号:
  -7.015006277027660872284922325741197022467E9L,  -2.149320689089020841076532186783055727299E8L,  -3.167210585700002703820077565539658995316E6L,  -1.576834867378554185210279285358586385266E4L};#define NRD6 8static const long double RD6[NRD6 + 1] ={  -2.073955870771283609792355579558899389085E13L,  -1.421592856111673959642750863283919318175E13L,  -4.012134994918353924219048850264207074949E12L,  -6.013361045800992316498238470888523722431E11L,  -5.145382510136622274784240527039643430628E10L,  -2.510575820013409711678540476918249524123E9L,  -6.564058379709759600836745035871373240904E7L,  -7.861511116647120540275354855221373571536E5L,  -2.821943442729620524365661338459579270561E3L  /* 1.0E0L */};/* log gamma(x+5) = log gamma(5) +  x P(x)/Q(x)   -0.5 <= x <= 0.5   4.5 <= x+5 <= 5.5   Peak relative error 3.4e-37  */static const long double lgam5a = 3.17803955078125E0L;static const long double lgam5b = 1.4279566695619646941601297055408873990961E-5L;#define NRN5 9static const long double RN5[NRN5 + 1] ={  2.010952885441805899580403215533972172098E11L,  1.916132681242540921354921906708215338584E11L,  7.679102403710581712903937970163206882492E10L,  1.680514903671382470108010973615268125169E10L,  2.181011222911537259440775283277711588410E9L,  1.705361119398837808244780667539728356096E8L,  7.792391565652481864976147945997033946360E6L,  1.910741381027985291688667214472560023819E5L,  2.088138241893612679762260077783794329559E3L,  6.330318119566998299106803922739066556550E0L};#define NRD5 8static const long double RD5[NRD5 + 1] ={  1.335189758138651840605141370223112376176E11L,  1.174130445739492885895466097516530211283E11L,  4.308006619274572338118732154886328519910E10L,  8.547402888692578655814445003283720677468E9L,  9.934628078575618309542580800421370730906E8L,  6.847107420092173812998096295422311820672E7L,  2.698552646016599923609773122139463150403E6L,  5.526516251532464176412113632726150253215E4L,  4.772343321713697385780533022595450486932E2L  /* 1.0E0L */};/* log gamma(x+4) = log gamma(4) +  x P(x)/Q(x)   -0.5 <= x <= 0.5   3.5 <= x+4 <= 4.5   Peak relative error 6.7e-37  */static const long double lgam4a = 1.791748046875E0L;static const long double lgam4b = 1.1422353055000812477358380702272722990692E-5L;#define NRN4 9static const long double RN4[NRN4 + 1] ={  -1.026583408246155508572442242188887829208E13L,  -1.306476685384622809290193031208776258809E13L,  -7.051088602207062164232806511992978915508E12L,  -2.100849457735620004967624442027793656108E12L,  -3.767473790774546963588549871673843260569E11L,  -4.156387497364909963498394522336575984206E10L,  -2.764021460668011732047778992419118757746E9L,  -1.036617204107109779944986471142938641399E8L,  -1.895730886640349026257780896972598305443E6L,  -1.180509051468390914200720003907727988201E4L};#define NRD4 9static const long double RD4[NRD4 + 1] ={  -8.172669122056002077809119378047536240889E12L,  -9.477592426087986751343695251801814226960E12L,  -4.629448850139318158743900253637212801682E12L,  -1.237965465892012573255370078308035272942E12L,  -1.971624313506929845158062177061297598956E11L,  -1.905434843346570533229942397763361493610E10L,  -1.089409357680461419743730978512856675984E9L,  -3.416703082301143192939774401370222822430E7L,  -4.981791914177103793218433195857635265295E5L,  -2.192507743896742751483055798411231453733E3L  /* 1.0E0L */};/* log gamma(x+3) = log gamma(3) +  x P(x)/Q(x)   -0.25 <= x <= 0.5   2.75 <= x+3 <= 3.5   Peak relative error 6.0e-37  */static const long double lgam3a = 6.93145751953125E-1L;static const long double lgam3b = 1.4286068203094172321214581765680755001344E-6L;#define NRN3 9static const long double RN3[NRN3 + 1] ={  -4.813901815114776281494823863935820876670E11L,  -8.425592975288250400493910291066881992620E11L,  -6.228685507402467503655405482985516909157E11L,  -2.531972054436786351403749276956707260499E11L,  -6.170200796658926701311867484296426831687E10L,  -9.211477458528156048231908798456365081135E9L,  -8.251806236175037114064561038908691305583E8L,  -4.147886355917831049939930101151160447495E7L,  -1.010851868928346082547075956946476932162E6L,  -8.333374463411801009783402800801201603736E3L};#define NRD3 9static const long double RD3[NRD3 + 1] ={  -5.216713843111675050627304523368029262450E11L,  -8.014292925418308759369583419234079164391E11L,  -5.180106858220030014546267824392678611990E11L,  -1.830406975497439003897734969120997840011E11L,  -3.845274631904879621945745960119924118925E10L,  -4.891033385370523863288908070309417710903E9L,  -3.670172254411328640353855768698287474282E8L,  -1.505316381525727713026364396635522516989E7L,  -2.856327162923716881454613540575964890347E5L,  -1.622140448015769906847567212766206894547E3L  /* 1.0E0L */};/* log gamma(x+2.5) = log gamma(2.5) +  x P(x)/Q(x)   -0.125 <= x <= 0.25   2.375 <= x+2.5 <= 2.75  */static const long double lgam2r5a = 2.8466796875E-1L;static const long double lgam2r5b = 1.4901722919159632494669682701924320137696E-5L;#define NRN2r5 8static const long double RN2r5[NRN2r5 + 1] ={  -4.676454313888335499356699817678862233205E9L,  -9.361888347911187924389905984624216340639E9L,  -7.695353600835685037920815799526540237703E9L,  -3.364370100981509060441853085968900734521E9L,  -8.449902011848163568670361316804900559863E8L,  -1.225249050950801905108001246436783022179E8L,  -9.732972931077110161639900388121650470926E6L,  -3.695711763932153505623248207576425983573E5L,  -4.717341584067827676530426007495274711306E3L};#define NRD2r5 8static const long double RD2r5[NRD2r5 + 1] ={  -6.650657966618993679456019224416926875619E9L,  -1.099511409330635807899718829033488771623E10L,  -7.482546968307837168164311101447116903148E9L,  -2.702967190056506495988922973755870557217E9L,  -5.570008176482922704972943389590409280950E8L,  -6.536934032192792470926310043166993233231E7L,  -4.101991193844953082400035444146067511725E6L,  -1.174082735875715802334430481065526664020E5L,  -9.932840389994157592102947657277692978511E2L  /* 1.0E0L */};/* log gamma(x+2) = x P(x)/Q(x)   -0.125 <= x <= +0.375   1.875 <= x+2 <= 2.375   Peak relative error 4.6e-36  */#define NRN2 9static const long double RN2[NRN2 + 1] ={  -3.716661929737318153526921358113793421524E9L,  -1.138816715030710406922819131397532331321E10L,  -1.421017419363526524544402598734013569950E10L,  -9.510432842542519665483662502132010331451E9L,  -3.747528562099410197957514973274474767329E9L,  -8.923565763363912474488712255317033616626E8L,  -1.261396653700237624185350402781338231697E8L,  -9.918402520255661797735331317081425749014E6L,  -3.753996255897143855113273724233104768831E5L,  -4.778761333044147141559311805999540765612E3L};#define NRD2 9static const long double RD2[NRD2 + 1] ={  -8.790916836764308497770359421351673950111E9L,  -2.023108608053212516399197678553737477486E10L,  -1.958067901852022239294231785363504458367E10L,  -1.035515043621003101254252481625188704529E10L,  -3.253884432621336737640841276619272224476E9L,  -6.186383531162456814954947669274235815544E8L,  -6.932557847749518463038934953605969951466E7L,  -4.240731768287359608773351626528479703758E6L,  -1.197343995089189188078944689846348116630E5L,  -1.004622911670588064824904487064114090920E3L/* 1.0E0 */};/* log gamma(x+1.75) = log gamma(1.75) +  x P(x)/Q(x)   -0.125 <= x <= +0.125   1.625 <= x+1.75 <= 1.875   Peak relative error 9.2e-37 */static const long double lgam1r75a = -8.441162109375E-2L;static const long double lgam1r75b = 1.0500073264444042213965868602268256157604E-5L;#define NRN1r75 8static const long double RN1r75[NRN1r75 + 1] ={  -5.221061693929833937710891646275798251513E7L,  -2.052466337474314812817883030472496436993E8L,  -2.952718275974940270675670705084125640069E8L,  -2.132294039648116684922965964126389017840E8L,  -8.554103077186505960591321962207519908489E7L,  -1.940250901348870867323943119132071960050E7L,  -2.379394147112756860769336400290402208435E6L,  -1.384060879999526222029386539622255797389E5L,  -2.698453601378319296159355612094598695530E3L};#define NRD1r75 8static const long double RD1r75[NRD1r75 + 1] ={  -2.109754689501705828789976311354395393605E8L,  -5.036651829232895725959911504899241062286E8L,  -4.954234699418689764943486770327295098084E8L,  -2.589558042412676610775157783898195339410E8L,  -7.731476117252958268044969614034776883031E7L,  -1.316721702252481296030801191240867486965E7L,  -1.201296501404876774861190604303728810836E6L,  -5.007966406976106636109459072523610273928E4L,  -6.155817990560743422008969155276229018209E2L  /* 1.0E0L */};/* log gamma(x+x0) = y0 +  x^2 P(x)/Q(x)   -0.0867 <= x <= +0.1634   1.374932... <= x+x0 <= 1.625032...   Peak relative error 4.0e-36  */static const long double x0a = 1.4616241455078125L;static const long double x0b = 7.9994605498412626595423257213002588621246E-6L;static const long double y0a = -1.21490478515625E-1L;static const long double y0b = 4.1879797753919044854428223084178486438269E-6L;#define NRN1r5 8static const long double RN1r5[NRN1r5 + 1] ={  6.827103657233705798067415468881313128066E5L,  1.910041815932269464714909706705242148108E6L,  2.194344176925978377083808566251427771951E6L,  1.332921400100891472195055269688876427962E6L,  4.589080973377307211815655093824787123508E5L,  8.900334161263456942727083580232613796141E4L,  9.053840838306019753209127312097612455236E3L,  4.053367147553353374151852319743594873771E2L,  5.040631576303952022968949605613514584950E0L};#define NRD1r5 8static const long double RD1r5[NRD1r5 + 1] ={  1.411036368843183477558773688484699813355E6L,  4.378121767236251950226362443134306184849E6L,  5.682322855631723455425929877581697918168E6L,  3.999065731556977782435009349967042222375E6L,  1.653651390456781293163585493620758410333E6L,  4.067774359067489605179546964969435858311E5L,  5.741463295366557346748361781768833633256E4L,  4.226404539738182992856094681115746692030E3L,  1.316980975410327975566999780608618774469E2L,  /* 1.0E0L */};/* log gamma(x+1.25) = log gamma(1.25) +  x P(x)/Q(x)   -.125 <= x <= +.125   1.125 <= x+1.25 <= 1.375   Peak relative error = 4.9e-36 */static const long double lgam1r25a = -9.82818603515625E-2L;static const long double lgam1r25b = 1.0023929749338536146197303364159774377296E-5L;#define NRN1r25 9static const long double RN1r25[NRN1r25 + 1] ={  -9.054787275312026472896002240379580536760E4L,  -8.685076892989927640126560802094680794471E4L,  2.797898965448019916967849727279076547109E5L,  6.175520827134342734546868356396008898299E5L,  5.179626599589134831538516906517372619641E5L,  2.253076616239043944538380039205558242161E5L,  5.312653119599957228630544772499197307195E4L,  6.434329437514083776052669599834938898255E3L,  3.385414416983114598582554037612347549220E2L,  4.907821957946273805080625052510832015792E0L};#define NRD1r25 8static const long double RD1r25[NRD1r25 + 1] ={  3.980939377333448005389084785896660309000E5L,  1.429634893085231519692365775184490465542E6L,  2.145438946455476062850151428438668234336E6L,  1.743786661358280837020848127465970357893E6L,  8.316364251289743923178092656080441655273E5L,  2.355732939106812496699621491135458324294E5L,  3.822267399625696880571810137601310855419E4L,  3.228463206479133236028576845538387620856E3L,  1.152133170470059555646301189220117965514E2L  /* 1.0E0L */};/* log gamma(x + 1) = x P(x)/Q(x)   0.0 <= x <= +0.125   1.0 <= x+1 <= 1.125   Peak relative error 1.1e-35  */#define NRN1 8static const long double RN1[NRN1 + 1] ={  -9.987560186094800756471055681088744738818E3L,  -2.506039379419574361949680225279376329742E4L,  -1.386770737662176516403363873617457652991E4L,  1.439445846078103202928677244188837130744E4L,  2.159612048879650471489449668295139990693E4L,  1.047439813638144485276023138173676047079E4L,  2.250316398054332592560412486630769139961E3L,  1.958510425467720733041971651126443864041E2L,  4.516830313569454663374271993200291219855E0L};#define NRD1 7static const long double RD1[NRD1 + 1] ={  1.730299573175751778863269333703788214547E4L,  6.807080914851328611903744668028014678148E4L,  1.090071629101496938655806063184092302439E5L,  9.124354356415154289343303999616003884080E4L,  4.262071638655772404431164427024003253954E4L,  1.096981664067373953673982635805821283581E4L,  1.431229503796575892151252708527595787588E3L,  7.734110684303689320830401788262295992921E1L /* 1.0E0 */};/* log gamma(x + 1) = x P(x)/Q(x)   -0.125 <= x <= 0   0.875 <= x+1 <= 1.0   Peak relative error 7.0e-37  */#define NRNr9 8

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -