⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_log1pl.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/*							log1pl.c * *      Relative error logarithm *	Natural logarithm of 1+x, 128-bit long double precision * * * * SYNOPSIS: * * long double x, y, log1pl(); * * y = log1pl( x ); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of 1+x. * * The argument 1+x is separated into its exponent and fractional * parts.  If the exponent is between -1 and +1, the logarithm * of the fraction is approximated by * *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). * * Otherwise, setting  z = 2(w-1)/(w+1), * *     log(w) = z + z^3 P(z)/Q(z). * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -1, 8       100000      1.9e-34     4.3e-35 *//* Copyright 2001 by Stephen L. Moshier     This library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2.1 of the License, or (at your option) any later version.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.    You should have received a copy of the GNU Lesser General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */#include "math.h"#include "math_private.h"/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) * 1/sqrt(2) <= 1+x < sqrt(2) * Theoretical peak relative error = 5.3e-37, * relative peak error spread = 2.3e-14 */static const long double  P12 = 1.538612243596254322971797716843006400388E-6L,  P11 = 4.998469661968096229986658302195402690910E-1L,  P10 = 2.321125933898420063925789532045674660756E1L,  P9 = 4.114517881637811823002128927449878962058E2L,  P8 = 3.824952356185897735160588078446136783779E3L,  P7 = 2.128857716871515081352991964243375186031E4L,  P6 = 7.594356839258970405033155585486712125861E4L,  P5 = 1.797628303815655343403735250238293741397E5L,  P4 = 2.854829159639697837788887080758954924001E5L,  P3 = 3.007007295140399532324943111654767187848E5L,  P2 = 2.014652742082537582487669938141683759923E5L,  P1 = 7.771154681358524243729929227226708890930E4L,  P0 = 1.313572404063446165910279910527789794488E4L,  /* Q12 = 1.000000000000000000000000000000000000000E0L, */  Q11 = 4.839208193348159620282142911143429644326E1L,  Q10 = 9.104928120962988414618126155557301584078E2L,  Q9 = 9.147150349299596453976674231612674085381E3L,  Q8 = 5.605842085972455027590989944010492125825E4L,  Q7 = 2.248234257620569139969141618556349415120E5L,  Q6 = 6.132189329546557743179177159925690841200E5L,  Q5 = 1.158019977462989115839826904108208787040E6L,  Q4 = 1.514882452993549494932585972882995548426E6L,  Q3 = 1.347518538384329112529391120390701166528E6L,  Q2 = 7.777690340007566932935753241556479363645E5L,  Q1 = 2.626900195321832660448791748036714883242E5L,  Q0 = 3.940717212190338497730839731583397586124E4L;/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), * where z = 2(x-1)/(x+1) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 1.1e-35, * relative peak error spread 1.1e-9 */static const long double  R5 = -8.828896441624934385266096344596648080902E-1L,  R4 = 8.057002716646055371965756206836056074715E1L,  R3 = -2.024301798136027039250415126250455056397E3L,  R2 = 2.048819892795278657810231591630928516206E4L,  R1 = -8.977257995689735303686582344659576526998E4L,  R0 = 1.418134209872192732479751274970992665513E5L,  /* S6 = 1.000000000000000000000000000000000000000E0L, */  S5 = -1.186359407982897997337150403816839480438E2L,  S4 = 3.998526750980007367835804959888064681098E3L,  S3 = -5.748542087379434595104154610899551484314E4L,  S2 = 4.001557694070773974936904547424676279307E5L,  S1 = -1.332535117259762928288745111081235577029E6L,  S0 = 1.701761051846631278975701529965589676574E6L;/* C1 + C2 = ln 2 */static const long double C1 = 6.93145751953125E-1L;static const long double C2 = 1.428606820309417232121458176568075500134E-6L;static const long double sqrth = 0.7071067811865475244008443621048490392848L;/* ln (2^16384 * (1 - 2^-113)) */static const long double maxlog = 1.1356523406294143949491931077970764891253E4L;static const long double big = 2e4932L;static const long double zero = 0.0L;#if 1/* Make sure these are prototyped.  */long double frexpl (long double, int *);long double ldexpl (long double, int);#endiflong double__log1pl (long double xm1){  long double x, y, z, r, s;  ieee854_long_double_shape_type u;  int32_t hx;  int e;  /* Test for NaN or infinity input. */  u.value = xm1;  hx = u.parts32.w0;  if (hx >= 0x7fff0000)    return xm1;  /* log1p(+- 0) = +- 0.  */  if (((hx & 0x7fffffff) == 0)      && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)    return xm1;  x = xm1 + 1.0L;  /* log1p(-1) = -inf */  if (x <= 0.0L)    {      if (x == 0.0L)	return (-1.0L / (x - x));      else	return (zero / (x - x));    }  /* Separate mantissa from exponent.  */  /* Use frexp used so that denormal numbers will be handled properly.  */  x = frexpl (x, &e);  /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),     where z = 2(x-1)/x+1).  */  if ((e > 2) || (e < -2))    {      if (x < sqrth)	{			/* 2( 2x-1 )/( 2x+1 ) */	  e -= 1;	  z = x - 0.5L;	  y = 0.5L * z + 0.5L;	}      else	{			/*  2 (x-1)/(x+1)   */	  z = x - 0.5L;	  z -= 0.5L;	  y = 0.5L * x + 0.5L;	}      x = z / y;      z = x * x;      r = ((((R5 * z	      + R4) * z	     + R3) * z	    + R2) * z	   + R1) * z	+ R0;      s = (((((z	       + S5) * z	      + S4) * z	     + S3) * z	    + S2) * z	   + S1) * z	+ S0;      z = x * (z * r / s);      z = z + e * C2;      z = z + x;      z = z + e * C1;      return (z);    }  /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */  if (x < sqrth)    {      e -= 1;      if (e != 0)	x = 2.0L * x - 1.0L;	/*  2x - 1  */      else	x = xm1;    }  else    {      if (e != 0)	x = x - 1.0L;      else	x = xm1;    }  z = x * x;  r = (((((((((((P12 * x		 + P11) * x		+ P10) * x	       + P9) * x	      + P8) * x	     + P7) * x	    + P6) * x	   + P5) * x	  + P4) * x	 + P3) * x	+ P2) * x       + P1) * x    + P0;  s = (((((((((((x		 + Q11) * x		+ Q10) * x	       + Q9) * x	      + Q8) * x	     + Q7) * x	    + Q6) * x	   + Q5) * x	  + Q4) * x	 + Q3) * x	+ Q2) * x       + Q1) * x    + Q0;  y = x * (z * r / s);  y = y + e * C2;  z = y - 0.5L * z;  z = z + x;  z = z + e * C1;  return (z);}weak_alias (__log1pl, log1pl)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -