⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_acosl.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//*   Long double expansions are   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>   and are incorporated herein by permission of the author.  The author    reserves the right to distribute this material elsewhere under different   copying permissions.  These modifications are distributed here under    the following terms:    This library is free software; you can redistribute it and/or    modify it under the terms of the GNU Lesser General Public    License as published by the Free Software Foundation; either    version 2.1 of the License, or (at your option) any later version.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU    Lesser General Public License for more details.    You should have received a copy of the GNU Lesser General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA *//* __ieee754_acosl(x) * Method : *      acos(x)  = pi/2 - asin(x) *      acos(-x) = pi/2 + asin(x) * For |x| <= 0.375 *      acos(x) = pi/2 - asin(x) * Between .375 and .5 the approximation is *      acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x) * Between .5 and .625 the approximation is *      acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x) * For x > 0.625, *      acos(x) = 2 asin(sqrt((1-x)/2)) *      computed with an extended precision square root in the leading term. * For x < -0.625 *      acos(x) = pi - 2 asin(sqrt((1-|x|)/2)) * * Special cases: *      if x is NaN, return x itself; *      if |x|>1, return NaN with invalid signal. * * Functions needed: __ieee754_sqrtl. */#include "math.h"#include "math_private.h"#ifdef __STDC__static const long double#elsestatic long double#endif  one = 1.0L,  pio2_hi = 1.5707963267948966192313216916397514420986L,  pio2_lo = 4.3359050650618905123985220130216759843812E-35L,  /* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)     -0.0625 <= x <= 0.0625     peak relative error 3.3e-35  */  rS0 =  5.619049346208901520945464704848780243887E0L,  rS1 = -4.460504162777731472539175700169871920352E1L,  rS2 =  1.317669505315409261479577040530751477488E2L,  rS3 = -1.626532582423661989632442410808596009227E2L,  rS4 =  3.144806644195158614904369445440583873264E1L,  rS5 =  9.806674443470740708765165604769099559553E1L,  rS6 = -5.708468492052010816555762842394927806920E1L,  rS7 = -1.396540499232262112248553357962639431922E1L,  rS8 =  1.126243289311910363001762058295832610344E1L,  rS9 =  4.956179821329901954211277873774472383512E-1L,  rS10 = -3.313227657082367169241333738391762525780E-1L,  sS0 = -4.645814742084009935700221277307007679325E0L,  sS1 =  3.879074822457694323970438316317961918430E1L,  sS2 = -1.221986588013474694623973554726201001066E2L,  sS3 =  1.658821150347718105012079876756201905822E2L,  sS4 = -4.804379630977558197953176474426239748977E1L,  sS5 = -1.004296417397316948114344573811562952793E2L,  sS6 =  7.530281592861320234941101403870010111138E1L,  sS7 =  1.270735595411673647119592092304357226607E1L,  sS8 = -1.815144839646376500705105967064792930282E1L,  sS9 = -7.821597334910963922204235247786840828217E-2L,  /* 1.000000000000000000000000000000000000000E0 */  acosr5625 = 9.7338991014954640492751132535550279812151E-1L,  pimacosr5625 = 2.1682027434402468335351320579240000860757E0L,  /* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x)     -0.0625 <= x <= 0.0625     peak relative error 2.1e-35  */  P0 =  2.177690192235413635229046633751390484892E0L,  P1 = -2.848698225706605746657192566166142909573E1L,  P2 =  1.040076477655245590871244795403659880304E2L,  P3 = -1.400087608918906358323551402881238180553E2L,  P4 =  2.221047917671449176051896400503615543757E1L,  P5 =  9.643714856395587663736110523917499638702E1L,  P6 = -5.158406639829833829027457284942389079196E1L,  P7 = -1.578651828337585944715290382181219741813E1L,  P8 =  1.093632715903802870546857764647931045906E1L,  P9 =  5.448925479898460003048760932274085300103E-1L,  P10 = -3.315886001095605268470690485170092986337E-1L,  Q0 = -1.958219113487162405143608843774587557016E0L,  Q1 =  2.614577866876185080678907676023269360520E1L,  Q2 = -9.990858606464150981009763389881793660938E1L,  Q3 =  1.443958741356995763628660823395334281596E2L,  Q4 = -3.206441012484232867657763518369723873129E1L,  Q5 = -1.048560885341833443564920145642588991492E2L,  Q6 =  6.745883931909770880159915641984874746358E1L,  Q7 =  1.806809656342804436118449982647641392951E1L,  Q8 = -1.770150690652438294290020775359580915464E1L,  Q9 = -5.659156469628629327045433069052560211164E-1L,  /* 1.000000000000000000000000000000000000000E0 */  acosr4375 = 1.1179797320499710475919903296900511518755E0L,  pimacosr4375 = 2.0236129215398221908706530535894517323217E0L,  /* asin(x) = x + x^3 pS(x^2) / qS(x^2)     0 <= x <= 0.5     peak relative error 1.9e-35  */  pS0 = -8.358099012470680544198472400254596543711E2L,  pS1 =  3.674973957689619490312782828051860366493E3L,  pS2 = -6.730729094812979665807581609853656623219E3L,  pS3 =  6.643843795209060298375552684423454077633E3L,  pS4 = -3.817341990928606692235481812252049415993E3L,  pS5 =  1.284635388402653715636722822195716476156E3L,  pS6 = -2.410736125231549204856567737329112037867E2L,  pS7 =  2.219191969382402856557594215833622156220E1L,  pS8 = -7.249056260830627156600112195061001036533E-1L,  pS9 =  1.055923570937755300061509030361395604448E-3L,  qS0 = -5.014859407482408326519083440151745519205E3L,  qS1 =  2.430653047950480068881028451580393430537E4L,  qS2 = -4.997904737193653607449250593976069726962E4L,  qS3 =  5.675712336110456923807959930107347511086E4L,  qS4 = -3.881523118339661268482937768522572588022E4L,  qS5 =  1.634202194895541569749717032234510811216E4L,  qS6 = -4.151452662440709301601820849901296953752E3L,  qS7 =  5.956050864057192019085175976175695342168E2L,  qS8 = -4.175375777334867025769346564600396877176E1L;  /* 1.000000000000000000000000000000000000000E0 */#ifdef __STDC__long double__ieee754_acosl (long double x)#elselong double__ieee754_acosl (x)     long double x;#endif{  long double z, r, w, p, q, s, t, f2;  int32_t ix, sign;  ieee854_long_double_shape_type u;  u.value = x;  sign = u.parts32.w0;  ix = sign & 0x7fffffff;  u.parts32.w0 = ix;		/* |x| */  if (ix >= 0x3fff0000)		/* |x| >= 1 */    {      if (ix == 0x3fff0000	  && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0)	{			/* |x| == 1 */	  if ((sign & 0x80000000) == 0)	    return 0.0;		/* acos(1) = 0  */	  else	    return (2.0 * pio2_hi) + (2.0 * pio2_lo);	/* acos(-1)= pi */	}      return (x - x) / (x - x);	/* acos(|x| > 1) is NaN */    }  else if (ix < 0x3ffe0000)	/* |x| < 0.5 */    {      if (ix < 0x3fc60000)	/* |x| < 2**-57 */	return pio2_hi + pio2_lo;      if (ix < 0x3ffde000)	/* |x| < .4375 */	{	  /* Arcsine of x.  */	  z = x * x;	  p = (((((((((pS9 * z		       + pS8) * z		      + pS7) * z		     + pS6) * z		    + pS5) * z		   + pS4) * z		  + pS3) * z		 + pS2) * z		+ pS1) * z	       + pS0) * z;	  q = (((((((( z		       + qS8) * z		     + qS7) * z		    + qS6) * z		   + qS5) * z		  + qS4) * z		 + qS3) * z		+ qS2) * z	       + qS1) * z	    + qS0;	  r = x + x * p / q;	  z = pio2_hi - (r - pio2_lo);	  return z;	}      /* .4375 <= |x| < .5 */      t = u.value - 0.4375L;      p = ((((((((((P10 * t		    + P9) * t		   + P8) * t		  + P7) * t		 + P6) * t		+ P5) * t	       + P4) * t	      + P3) * t	     + P2) * t	    + P1) * t	   + P0) * t;      q = (((((((((t		   + Q9) * t		  + Q8) * t		 + Q7) * t		+ Q6) * t	       + Q5) * t	      + Q4) * t	     + Q3) * t	    + Q2) * t	   + Q1) * t	+ Q0;      r = p / q;      if (sign & 0x80000000)	r = pimacosr4375 - r;      else	r = acosr4375 + r;      return r;    }  else if (ix < 0x3ffe4000)	/* |x| < 0.625 */    {      t = u.value - 0.5625L;      p = ((((((((((rS10 * t		    + rS9) * t		   + rS8) * t		  + rS7) * t		 + rS6) * t		+ rS5) * t	       + rS4) * t	      + rS3) * t	     + rS2) * t	    + rS1) * t	   + rS0) * t;      q = (((((((((t		   + sS9) * t		  + sS8) * t		 + sS7) * t		+ sS6) * t	       + sS5) * t	      + sS4) * t	     + sS3) * t	    + sS2) * t	   + sS1) * t	+ sS0;      if (sign & 0x80000000)	r = pimacosr5625 - p / q;      else	r = acosr5625 + p / q;      return r;    }  else    {				/* |x| >= .625 */      z = (one - u.value) * 0.5;      s = __ieee754_sqrtl (z);      /* Compute an extended precision square root from	 the Newton iteration  s -> 0.5 * (s + z / s).         The change w from s to the improved value is	    w = 0.5 * (s + z / s) - s  = (s^2 + z)/2s - s = (z - s^2)/2s.          Express s = f1 + f2 where f1 * f1 is exactly representable.	  w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s .          s + w has extended precision.  */      u.value = s;      u.parts32.w2 = 0;      u.parts32.w3 = 0;      f2 = s - u.value;      w = z - u.value * u.value;      w = w - 2.0 * u.value * f2;      w = w - f2 * f2;      w = w / (2.0 * s);      /* Arcsine of s.  */      p = (((((((((pS9 * z		   + pS8) * z		  + pS7) * z		 + pS6) * z		+ pS5) * z	       + pS4) * z	      + pS3) * z	     + pS2) * z	    + pS1) * z	   + pS0) * z;      q = (((((((( z		   + qS8) * z		 + qS7) * z		+ qS6) * z	       + qS5) * z	      + qS4) * z	     + qS3) * z	    + qS2) * z	   + qS1) * z	+ qS0;      r = s + (w + s * p / q);      if (sign & 0x80000000)	w = pio2_hi + (pio2_lo - r);      else	w = r;      return 2.0 * w;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -