⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_cosl.c

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 C
字号:
/* s_cosl.c -- long double version of s_cos.c. * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. *//* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== *//* cosl(x) * Return cosine function of x. * * kernel function: *	__kernel_sinl		... sine function on [-pi/4,pi/4] *	__kernel_cosl		... cosine function on [-pi/4,pi/4] *	__ieee754_rem_pio2l	... argument reduction routine * * Method. *      Let S,C and T denote the sin, cos and tan respectively on *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 *	in [-pi/4 , +pi/4], and let n = k mod 4. *	We have * *          n        sin(x)      cos(x)        tan(x) *     ---------------------------------------------------------- *	    0	       S	   C		 T *	    1	       C	  -S		-1/T *	    2	      -S	  -C		 T *	    3	      -C	   S		-1/T *     ---------------------------------------------------------- * * Special cases: *      Let trig be any of sin, cos, or tan. *      trig(+-INF)  is NaN, with signals; *      trig(NaN)    is that NaN; * * Accuracy: *	TRIG(x) returns trig(x) nearly rounded */#include "math.h"#include "math_private.h"#ifdef __STDC__	long double __cosl(long double x)#else	long double __cosl(x)	long double x;#endif{	long double y[2],z=0.0L;	int64_t n, ix;    /* High word of x. */	GET_LDOUBLE_MSW64(ix,x);    /* |x| ~< pi/4 */	ix &= 0x7fffffffffffffffLL;	if(ix <= 0x3ffe921fb54442d1LL)	  return __kernel_cosl(x,z);    /* cos(Inf or NaN) is NaN */	else if (ix>=0x7fff000000000000LL) return x-x;    /* argument reduction needed */	else {	    n = __ieee754_rem_pio2l(x,y);	    switch(n&3) {		case 0: return  __kernel_cosl(y[0],y[1]);		case 1: return -__kernel_sinl(y[0],y[1],1);		case 2: return -__kernel_cosl(y[0],y[1]);		default:		        return  __kernel_sinl(y[0],y[1],1);	    }	}}weak_alias (__cosl, cosl)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -