⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_tan.s

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 S
📖 第 1 页 / 共 2 页
字号:
.file "tan.s"// Copyright (C) 2000, 2001, Intel Corporation// All rights reserved.// // Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource.//// History//==============================================================// 2/02/00: Initial version// 4/04/00  Unwind support added// 12/27/00 Improved speed//// API//==============================================================// double tan( double x);//// Overview of operation//==============================================================// If the input value in radians is |x| >= 1.xxxxx 2^10 call the// older slower version.//// The new algorithm is used when |x| <= 1.xxxxx 2^9.//// Represent the input X as Nfloat * pi/2 + r//    where r can be negative and |r| <= pi/4////     tan_W  = x * 2/pi//     Nfloat = round_int(tan_W)////     tan_r  = x - Nfloat * (pi/2)_hi//     tan_r  = tan_r - Nfloat * (pi/2)_lo//// We have two paths: p8, when Nfloat is even and p9. when Nfloat is odd.// p8: tan(X) =  tan(r)// p9: tan(X) = -cot(r)//// Each is evaluated as a series. The p9 path requires 1/r.//// The coefficients used in the series are stored in a table as// are the pi constants.//// Registers used//==============================================================//// predicate registers used:  // p6-10//// floating-point registers used:  // f10-15, f32-105// f8, input//// general registers used// r14-18, r32-43//#include "libm_support.h"// Assembly macros//==============================================================TAN_INV_PI_BY_2_2TO64        = f10TAN_RSHF_2TO64               = f11TAN_2TOM64                   = f12TAN_RSHF                     = f13TAN_W_2TO64_RSH              = f14TAN_NFLOAT                   = f15tan_Inv_Pi_by_2              = f32tan_Pi_by_2_hi               = f33tan_Pi_by_2_lo               = f34tan_P0                       = f35tan_P1                       = f36tan_P2                       = f37tan_P3                       = f38 tan_P4                       = f39 tan_P5                       = f40 tan_P6                       = f41tan_P7                       = f42tan_P8                       = f43 tan_P9                       = f44 tan_P10                      = f45 tan_P11                      = f46tan_P12                      = f47 tan_P13                      = f48tan_P14                      = f49tan_P15                      = f50tan_Q0                       = f51 tan_Q1                       = f52 tan_Q2                       = f53 tan_Q3                       = f54 tan_Q4                       = f55 tan_Q5                       = f56 tan_Q6                       = f57 tan_Q7                       = f58 tan_Q8                       = f59tan_Q9                       = f60tan_Q10                      = f61tan_r                        = f62tan_rsq                      = f63tan_rcube                    = f64tan_v18                      = f65tan_v16                      = f66tan_v17                      = f67tan_v12                      = f68tan_v13                      = f69tan_v7                       = f70tan_v8                       = f71tan_v4                       = f72tan_v5                       = f73tan_v15                      = f74tan_v11                      = f75tan_v14                      = f76tan_v3                       = f77tan_v6                       = f78tan_v10                      = f79tan_v2                       = f80tan_v9                       = f81tan_v1                       = f82tan_int_Nfloat               = f83 tan_Nfloat                   = f84 tan_NORM_f8                  = f85 tan_W                        = f86tan_y0                       = f87tan_d                        = f88 tan_y1                       = f89 tan_dsq                      = f90 tan_y2                       = f91 tan_d4                       = f92 tan_inv_r                    = f93 tan_z1                       = f94tan_z2                       = f95tan_z3                       = f96tan_z4                       = f97tan_z5                       = f98tan_z6                       = f99tan_z7                       = f100tan_z8                       = f101tan_z9                       = f102tan_z10                      = f103tan_z11                      = f104tan_z12                      = f105/////////////////////////////////////////////////////////////tan_GR_sig_inv_pi_by_2       = r14tan_GR_rshf_2to64            = r15tan_GR_exp_2tom64            = r16tan_GR_n                     = r17tan_GR_rshf                  = r18tan_AD                       = r33tan_GR_10009                 = r34 tan_GR_17_ones               = r35 tan_GR_N_odd_even            = r36 tan_GR_N                     = r37 tan_signexp                  = r38tan_exp                      = r39tan_ADQ                      = r40GR_SAVE_PFS                  = r41 GR_SAVE_B0                   = r42       GR_SAVE_GP                   = r43      #ifdef _LIBC.rodata#else.data#endif.align 16double_tan_constants:ASM_TYPE_DIRECTIVE(double_tan_constants,@object)//   data8 0xA2F9836E4E44152A, 0x00003FFE // 2/pi   data8 0xC90FDAA22168C234, 0x00003FFF // pi/2 hi   data8 0xBEEA54580DDEA0E1 // P14    data8 0x3ED3021ACE749A59 // P15   data8 0xBEF312BD91DC8DA1 // P12    data8 0x3EFAE9AFC14C5119 // P13   data8 0x3F2F342BF411E769 // P8   data8 0x3F1A60FC9F3B0227 // P9   data8 0x3EFF246E78E5E45B // P10   data8 0x3F01D9D2E782875C // P11   data8 0x3F8226E34C4499B6 // P4   data8 0x3F6D6D3F12C236AC // P5   data8 0x3F57DA1146DCFD8B // P6   data8 0x3F43576410FE3D75 // P7   data8 0x3FD5555555555555 // P0   data8 0x3FC11111111111C2 // P1   data8 0x3FABA1BA1BA0E850 // P2   data8 0x3F9664F4886725A7 // P3ASM_SIZE_DIRECTIVE(double_tan_constants)double_Q_tan_constants:ASM_TYPE_DIRECTIVE(double_Q_tan_constants,@object)   data8 0xC4C6628B80DC1CD1, 0x00003FBF // pi/2 lo   data8 0x3E223A73BA576E48 // Q8   data8 0x3DF54AD8D1F2CA43 // Q9   data8 0x3EF66A8EE529A6AA // Q4   data8 0x3EC2281050410EE6 // Q5   data8 0x3E8D6BB992CC3CF5 // Q6   data8 0x3E57F88DE34832E4 // Q7   data8 0x3FD5555555555555 // Q0   data8 0x3F96C16C16C16DB8 // Q1   data8 0x3F61566ABBFFB489 // Q2   data8 0x3F2BBD77945C1733 // Q3   data8 0x3D927FB33E2B0E04 // Q10ASM_SIZE_DIRECTIVE(double_Q_tan_constants)   .align 32.global tan##ifdef _LIBC.global __tan##endif////////////////////////////////////////////////////////.section .text.proc  tan##ifdef _LIBC.proc  __tan##endif.align 32tan: #ifdef _LIBC__tan: #endif// The initial fnorm will take any unmasked faults and// normalize any single/double unorms{ .mlx      alloc          r32=ar.pfs,1,11,0,0                     movl tan_GR_sig_inv_pi_by_2 = 0xA2F9836E4E44152A // significand of 2/pi}{ .mlx      addl           tan_AD   = @ltoff(double_tan_constants), gp      movl tan_GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+63+1)};;{ .mfi      ld8 tan_AD = [tan_AD]      fnorm     tan_NORM_f8  = f8                            mov tan_GR_exp_2tom64 = 0xffff-64 // exponent of scaling factor 2^-64}{ .mlx      nop.m 999      movl tan_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift};;// Form two constants we need//   2/pi * 2^1 * 2^63, scaled by 2^64 since we just loaded the significand//   1.1000...000 * 2^(63+63+1) to right shift int(W) into the significand{ .mmi      setf.sig TAN_INV_PI_BY_2_2TO64 = tan_GR_sig_inv_pi_by_2      setf.d TAN_RSHF_2TO64 = tan_GR_rshf_2to64      mov       tan_GR_17_ones     = 0x1ffff             ;;}// Form another constant//   2^-64 for scaling Nfloat//   1.1000...000 * 2^63, the right shift constant{ .mmf      setf.exp TAN_2TOM64 = tan_GR_exp_2tom64      adds tan_ADQ = double_Q_tan_constants - double_tan_constants, tan_AD      fclass.m.unc  p6,p0 = f8, 0x07  // Test for x=0};;// Form another constant//   2^-64 for scaling Nfloat//   1.1000...000 * 2^63, the right shift constant{ .mmf      setf.d TAN_RSHF = tan_GR_rshf      ldfe      tan_Pi_by_2_hi = [tan_AD],16       fclass.m.unc  p7,p0 = f8, 0x23  // Test for x=inf};;{ .mfb      ldfe      tan_Pi_by_2_lo = [tan_ADQ],16                 fclass.m.unc  p8,p0 = f8, 0xc3  // Test for x=nan(p6)  br.ret.spnt    b0    ;;         // Exit for x=0}{ .mfi      ldfpd     tan_P14,tan_P15 = [tan_AD],16                         (p7)  frcpa.s0  f8,p9=f0,f0           // Set qnan indef if x=inf      mov       tan_GR_10009 = 0x10009}{ .mib      ldfpd      tan_Q8,tan_Q9  = [tan_ADQ],16                              nop.i 999(p7)  br.ret.spnt    b0    ;;         // Exit for x=inf}{ .mfi      ldfpd      tan_P12,tan_P13 = [tan_AD],16                         (p8)  fma.d f8=f8,f1,f8               // Set qnan if x=nan      nop.i 999}{ .mib      ldfpd      tan_Q4,tan_Q5  = [tan_ADQ],16                              nop.i 999(p8)  br.ret.spnt    b0    ;;         // Exit for x=nan}{ .mmi      getf.exp  tan_signexp    = tan_NORM_f8                       ldfpd      tan_P8,tan_P9  = [tan_AD],16                               nop.i 999 ;;}// Multiply x by scaled 2/pi and add large const to shift integer part of W to //   rightmost bits of significand{ .mfi      ldfpd      tan_Q6,tan_Q7  = [tan_ADQ],16      fma.s1 TAN_W_2TO64_RSH = tan_NORM_f8,TAN_INV_PI_BY_2_2TO64,TAN_RSHF_2TO64      nop.i 999 ;;}{ .mmi      ldfpd      tan_P10,tan_P11 = [tan_AD],16                               nop.m 999      and       tan_exp = tan_GR_17_ones, tan_signexp         ;;}// p7 is true if we must call DBX TAN// p7 is true if f8 exp is > 0x10009 (which includes all ones//    NAN or inf){ .mmi      ldfpd      tan_Q0,tan_Q1  = [tan_ADQ],16                               cmp.ge.unc  p7,p0 = tan_exp,tan_GR_10009                     nop.i 999 ;;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -