⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_expm1l.s

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 S
📖 第 1 页 / 共 3 页
字号:
.file "exp_m1l.s"// Copyright (C) 2000, 2001, Intel Corporation// All rights reserved.// // Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource.//// History//==============================================================// 4/04/00  Unwind support added// 8/15/00  Bundle added after call to __libm_error_support to properly//          set [the previously overwritten] GR_Parameter_RESULT.//// ********************************************************************* //// Function:   Combined expl(x) and expm1l(x), where//                        x //             expl(x) = e , for double-extended precision x values//                          x//             expm1l(x) = e  - 1  for double-extended precision x values//// ********************************************************************* //// Resources Used:////    Floating-Point Registers: f8  (Input and Return Value) //                              f9,f32-f61, f99-f102 ////    General Purpose Registers: //      r32-r61//      r62-r65 (Used to pass arguments to error handling routine)//                                     //    Predicate Registers:      p6-p15//// ********************************************************************* //// IEEE Special Conditions:////    Denormal  fault raised on denormal inputs  //    Overflow exceptions raised when appropriate for exp and expm1//    Underflow exceptions raised when appropriate for exp and expm1//    (Error Handling Routine called for overflow and Underflow)//    Inexact raised when appropriate by algorithm ////    expl(inf) = inf//    expl(-inf) = +0//    expl(SNaN) = QNaN//    expl(QNaN) = QNaN//    expl(0) = 1//    expl(EM_special Values) = QNaN//    expl(inf) = inf//    expm1l(-inf) = -1 //    expm1l(SNaN) = QNaN//    expm1l(QNaN) = QNaN//    expm1l(0) = 0//    expm1l(EM_special Values) = QNaN//    // ********************************************************************* //// Implementation and Algorithm Notes:////  ker_exp_64( in_FR  : X,//            in_GR  : Flag,//            in_GR  : Expo_Range//            out_FR : Y_hi,//            out_FR : Y_lo,//            out_FR : scale,//            out_PR : Safe )//// On input, X is in register format and // Flag  = 0 for exp,// Flag  = 1 for expm1,//// On output, provided X and X_cor are real numbers, then////   scale*(Y_hi + Y_lo)  approximates  expl(X)       if Flag is 0//   scale*(Y_hi + Y_lo)  approximates  expl(X)-1     if Flag is 1//// The accuracy is sufficient for a highly accurate 64 sig.// bit implementation.  Safe is set if there is no danger of // overflow/underflow when the result is composed from scale, // Y_hi and Y_lo. Thus, we can have a fast return if Safe is set. // Otherwise, one must prepare to handle the possible exception // appropriately.  Note that SAFE not set (false) does not mean // that overflow/underflow will occur; only the setting of SAFE// guarantees the opposite.//// **** High Level Overview **** //// The method consists of three cases.// // If           |X| < Tiny	use case exp_tiny;// else if	|X| < 2^(-6)	use case exp_small;// else		use case exp_regular;//// Case exp_tiny:////   1 + X     can be used to approximate expl(X) or expl(X+X_cor);//   X + X^2/2 can be used to approximate expl(X) - 1//// Case exp_small:////   Here, expl(X), expl(X+X_cor), and expl(X) - 1 can all be //   appproximated by a relatively simple polynomial.////   This polynomial resembles the truncated Taylor series////	expl(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!//// Case exp_regular:////   Here we use a table lookup method. The basic idea is that in//   order to compute expl(X), we accurately decompose X into////   X = N * log(2)/(2^12)  + r,	|r| <= log(2)/2^13.////   Hence////   expl(X) = 2^( N / 2^12 ) * expl(r).////   The value 2^( N / 2^12 ) is obtained by simple combinations//   of values calculated beforehand and stored in table; expl(r)//   is approximated by a short polynomial because |r| is small.////   We elaborate this method in 4 steps.////   Step 1: Reduction////   The value 2^12/log(2) is stored as a double-extended number//   L_Inv.////   N := round_to_nearest_integer( X * L_Inv )////   The value log(2)/2^12 is stored as two numbers L_hi and L_lo so//   that r can be computed accurately via////   r := (X - N*L_hi) - N*L_lo////   We pick L_hi such that N*L_hi is representable in 64 sig. bits//   and thus the FMA   X - N*L_hi   is error free. So r is the //   1 rounding error from an exact reduction with respect to //   //   L_hi + L_lo.////   In particular, L_hi has 30 significant bit and can be stored//   as a double-precision number; L_lo has 64 significant bits and//   stored as a double-extended number.////   In the case Flag = 2, we further modify r by////   r := r + X_cor.////   Step 2: Approximation////   expl(r) - 1 is approximated by a short polynomial of the form//   //   r + A_1 r^2 + A_2 r^3 + A_3 r^4 .////   Step 3: Composition from Table Values ////   The value 2^( N / 2^12 ) can be composed from a couple of tables//   of precalculated values. First, express N as three integers//   K, M_1, and M_2 as////     N  =  K * 2^12  + M_1 * 2^6 + M_2////   Where 0 <= M_1, M_2 < 2^6; and K can be positive or negative.//   When N is represented in 2's complement, M_2 is simply the 6//   lsb's, M_1 is the next 6, and K is simply N shifted right//   arithmetically (sign extended) by 12 bits.////   Now, 2^( N / 2^12 ) is simply  //	//      2^K * 2^( M_1 / 2^6 ) * 2^( M_2 / 2^12 )////   Clearly, 2^K needs no tabulation. The other two values are less//   trivial because if we store each accurately to more than working//   precision, than its product is too expensive to calculate. We//   use the following method.////   Define two mathematical values, delta_1 and delta_2, implicitly//   such that////     T_1 = expl( [M_1 log(2)/2^6]  -  delta_1 ) //     T_2 = expl( [M_2 log(2)/2^12] -  delta_2 )////   are representable as 24 significant bits. To illustrate the idea,//   we show how we define delta_1: ////     T_1     := round_to_24_bits( expl( M_1 log(2)/2^6 ) )//     delta_1  = (M_1 log(2)/2^6) - log( T_1 )  ////   The last equality means mathematical equality. We then tabulate////     W_1 := expl(delta_1) - 1//     W_2 := expl(delta_2) - 1////   Both in double precision.////   From the tabulated values T_1, T_2, W_1, W_2, we compose the values//   T and W via////     T := T_1 * T_2			...exactly//     W := W_1 + (1 + W_1)*W_2	////   W approximates expl( delta ) - 1  where delta = delta_1 + delta_2.//   The mathematical product of T and (W+1) is an accurate representation//   of 2^(M_1/2^6) * 2^(M_2/2^12).////   Step 4. Reconstruction////   Finally, we can reconstruct expl(X), expl(X) - 1. //   Because////	X = K * log(2) + (M_1*log(2)/2^6  - delta_1) //		       + (M_2*log(2)/2^12 - delta_2)//		       + delta_1 + delta_2 + r 		...accurately//   We have////	expl(X) ~=~ 2^K * ( T + T*[expl(delta_1+delta_2+r) - 1] )//	       ~=~ 2^K * ( T + T*[expl(delta + r) - 1]         )//	       ~=~ 2^K * ( T + T*[(expl(delta)-1)  //				 + expl(delta)*(expl(r)-1)]   )//             ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )//             ~=~ 2^K * ( Y_hi  +  Y_lo )////   where Y_hi = T  and Y_lo = T*(W + (1+W)*poly(r))////   For expl(X)-1, we have////	expl(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1//		 ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )////   and we combine Y_hi + Y_lo - 2^(-N)  into the form of two //   numbers  Y_hi + Y_lo carefully.////   **** Algorithm Details ****////   A careful algorithm must be used to realize the mathematical ideas//   accurately. We describe each of the three cases. We assume SAFE//   is preset to be TRUE.////   Case exp_tiny:////   The important points are to ensure an accurate result under //   different rounding directions and a correct setting of the SAFE //   flag.////   If Flag is 1, then//      SAFE  := False	...possibility of underflow//      Scale := 1.0//      Y_hi  := X//      Y_lo  := 2^(-17000)//   Else//      Scale := 1.0//      Y_hi  := 1.0//      Y_lo  := X	...for different rounding modes//   Endif////   Case exp_small:////   Here we compute a simple polynomial. To exploit parallelism, we split//   the polynomial into several portions.////   Let r = X ////   If Flag is not 1	...i.e. expl( argument )////      rsq := r * r; //      r4  := rsq*rsq//      poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))//      poly_hi := r + rsq*(P_1 + r*P_2)//      Y_lo    := poly_hi + r4 * poly_lo//      set lsb(Y_lo) to 1//      Y_hi    := 1.0//      Scale   := 1.0////   Else			...i.e. expl( argument ) - 1////      rsq := r * r//      r4  := rsq * rsq//      r6  := rsq * r4//      poly_lo := r6*(Q_5 + r*(Q_6 + r*Q_7))//      poly_hi := Q_1 + r*(Q_2 + r*(Q_3 + r*Q_4))//      Y_lo    := rsq*poly_hi +  poly_lo//      set lsb(Y_lo) to 1//      Y_hi    := X//      Scale   := 1.0////   Endif////  Case exp_regular:////  The previous description contain enough information except the//  computation of poly and the final Y_hi and Y_lo in the case for//  expl(X)-1.////  The computation of poly for Step 2:////   rsq := r*r//   poly := r + rsq*(A_1 + r*(A_2 + r*A_3))////  For the case expl(X) - 1, we need to incorporate 2^(-K) into//  Y_hi and Y_lo at the end of Step 4.////   If K > 10 then//      Y_lo := Y_lo - 2^(-K)//   Else//      If K < -10 then//	 Y_lo := Y_hi + Y_lo//	 Y_hi := -2^(-K)//      Else//	 Y_hi := Y_hi - 2^(-K)//      End If//   End If//#include "libm_support.h"#ifdef _LIBC.rodata#else.data#endif.align 64 Constants_exp_64_Arg:ASM_TYPE_DIRECTIVE(Constants_exp_64_Arg,@object)data4 0x5C17F0BC,0xB8AA3B29,0x0000400B,0x00000000 data4 0x00000000,0xB17217F4,0x00003FF2,0x00000000data4 0xF278ECE6,0xF473DE6A,0x00003FD4,0x00000000// /* Inv_L, L_hi, L_lo */ASM_SIZE_DIRECTIVE(Constants_exp_64_Arg).align 64 Constants_exp_64_Exponents:ASM_TYPE_DIRECTIVE(Constants_exp_64_Exponents,@object)data4 0x0000007E,0x00000000,0xFFFFFF83,0xFFFFFFFFdata4 0x000003FE,0x00000000,0xFFFFFC03,0xFFFFFFFFdata4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFFdata4 0x00003FFE,0x00000000,0xFFFFC003,0xFFFFFFFFdata4 0xFFFFFFE2,0xFFFFFFFF,0xFFFFFFC4,0xFFFFFFFFdata4 0xFFFFFFBA,0xFFFFFFFF,0xFFFFFFBA,0xFFFFFFFFASM_SIZE_DIRECTIVE(Constants_exp_64_Exponents).align 64 Constants_exp_64_A:ASM_TYPE_DIRECTIVE(Constants_exp_64_A,@object)data4 0xB1B736A0,0xAAAAAAAB,0x00003FFA,0x00000000data4 0x90CD6327,0xAAAAAAAB,0x00003FFC,0x00000000data4 0xFFFFFFFF,0xFFFFFFFF,0x00003FFD,0x00000000// /* Reversed */ASM_SIZE_DIRECTIVE(Constants_exp_64_A).align 64 Constants_exp_64_P:ASM_TYPE_DIRECTIVE(Constants_exp_64_P,@object)data4 0x43914A8A,0xD00D6C81,0x00003FF2,0x00000000data4 0x30304B30,0xB60BC4AC,0x00003FF5,0x00000000data4 0x7474C518,0x88888888,0x00003FF8,0x00000000data4 0x8DAE729D,0xAAAAAAAA,0x00003FFA,0x00000000data4 0xAAAAAF61,0xAAAAAAAA,0x00003FFC,0x00000000data4 0x000004C7,0x80000000,0x00003FFE,0x00000000 // /* Reversed */ASM_SIZE_DIRECTIVE(Constants_exp_64_P).align 64 Constants_exp_64_Q:ASM_TYPE_DIRECTIVE(Constants_exp_64_Q,@object)data4 0xA49EF6CA,0xD00D56F7,0x00003FEF,0x00000000data4 0x1C63493D,0xD00D59AB,0x00003FF2,0x00000000data4 0xFB50CDD2,0xB60B60B5,0x00003FF5,0x00000000data4 0x7BA68DC8,0x88888888,0x00003FF8,0x00000000data4 0xAAAAAC8D,0xAAAAAAAA,0x00003FFA,0x00000000data4 0xAAAAACCA,0xAAAAAAAA,0x00003FFC,0x00000000data4 0x00000000,0x80000000,0x00003FFE,0x00000000 // /* Reversed */ASM_SIZE_DIRECTIVE(Constants_exp_64_Q).align 64 Constants_exp_64_T1:ASM_TYPE_DIRECTIVE(Constants_exp_64_T1,@object)data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29 data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5 data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DCdata4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942Ddata4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDAdata4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3Adata4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5Bdata4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CDdata4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35Bdata4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396Adata4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0CASM_SIZE_DIRECTIVE(Constants_exp_64_T1).align 64 Constants_exp_64_T2:ASM_TYPE_DIRECTIVE(Constants_exp_64_T2,@object)data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4 data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7 data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349 data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987 data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610 data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8 data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50 data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07 data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269 data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37ASM_SIZE_DIRECTIVE(Constants_exp_64_T2).align 64 Constants_exp_64_W1:ASM_TYPE_DIRECTIVE(Constants_exp_64_W1,@object)data4 0x00000000,0x00000000,0x171EC4B4,0xBE384454data4 0x4AA72766,0xBE694741,0xD42518F8,0xBE5D32B6data4 0x3A319149,0x3E68D96D,0x62415F36,0xBE68F4DAdata4 0xC9C86A3B,0xBE6DDA2F,0xF49228FE,0x3E6B2E50data4 0x1188B886,0xBE49C0C2,0x1A4C2F1F,0x3E64BFC2data4 0x2CB98B54,0xBE6A2FBB,0x9A55D329,0x3E5DC5DEdata4 0x39A7AACE,0x3E696490,0x5C66DBA5,0x3E54728Bdata4 0xBA1C7D7D,0xBE62B0DB,0x09F1AF5F,0x3E576E04data4 0x1A0DD6A1,0x3E612500,0x795FBDEF,0xBE66A419data4 0xE1BD41FC,0xBE5CDE8C,0xEA54964F,0xBE621376data4 0x476E76EE,0x3E6370BE,0x3427EB92,0x3E390D1A data4 0x2BF82BF8,0x3E1336DE,0xD0F7BD9E,0xBE5FF1CB data4 0x0CEB09DD,0xBE60A355,0x0980F30D,0xBE5CA37E data4 0x4C082D25,0xBE5C541B,0x3B467D29,0xBE5BBECA data4 0xB9D946C5,0xBE400D8A,0x07ED374A,0xBE5E2A08 data4 0x365C8B0A,0xBE66CB28,0xD3403BCA,0x3E3AAD5B data4 0xC7EA21E0,0x3E526055,0xE72880D6,0xBE442C75 data4 0x85222A43,0x3E58B2BB,0x522C42BF,0xBE5AAB79 data4 0x469DC2BC,0xBE605CB4,0xA48C40DC,0xBE589FA7 data4 0x1AA42614,0xBE51C214,0xC37293F4,0xBE48D087 data4 0xA2D673E0,0x3E367A1C,0x114F7A38,0xBE51BEBB data4 0x661A4B48,0xBE6348E5,0x1D3B9962,0xBDF52643  data4 0x35A78A53,0x3E3A3B5E,0x1CECD788,0xBE46C46C data4 0x7857D689,0xBE60B7EC,0xD14F1AD7,0xBE594D3D data4 0x4C9A8F60,0xBE4F9C30,0x02DFF9D2,0xBE521873 data4 0x55E6D68F,0xBE5E4C88,0x667F3DC4,0xBE62140F data4 0x3BF88747,0xBE36961B,0xC96EC6AA,0x3E602861 data4 0xD57FD718,0xBE3B5151,0xFC4A627B,0x3E561CD0 data4 0xCA913FEA,0xBE3A5217,0x9A5D193A,0x3E40A3CC data4 0x10A9C312,0xBE5AB713,0xC5F57719,0x3E4FDADB data4 0xDBDF59D5,0x3E361428,0x61B4180D,0x3E5DB5DB data4 0x7408D856,0xBE42AD5F,0x31B2B707,0x3E2A3148 ASM_SIZE_DIRECTIVE(Constants_exp_64_W1).align 64 Constants_exp_64_W2:ASM_TYPE_DIRECTIVE(Constants_exp_64_W2,@object)data4 0x00000000,0x00000000,0x37A3D7A2,0xBE641F25 data4 0xAD028C40,0xBE68DD57,0xF212B1B6,0xBE5C77D8 data4 0x1BA5B070,0x3E57878F,0x2ECAE6FE,0xBE55A36A data4 0x569DFA3B,0xBE620608,0xA6D300A3,0xBE53B50E data4 0x223F8F2C,0x3E5B5EF2,0xD6DE0DF4,0xBE56A0D9 data4 0xEAE28F51,0xBE64EEF3,0x367EA80B,0xBE5E5AE2 data4 0x5FCBC02D,0x3E47CB1A,0x9BDAFEB7,0xBE656BA0 data4 0x805AFEE7,0x3E6E70C6,0xA3415EBA,0xBE6E0509 data4 0x49BFF529,0xBE56856B,0x00508651,0x3E66DD33 data4 0xC114BC13,0x3E51165F,0xC453290F,0x3E53333D data4 0x05539FDA,0x3E6A072B,0x7C0A7696,0xBE47CD87 data4 0xEB05C6D9,0xBE668BF4,0x6AE86C93,0xBE67C3E3 data4 0xD0B3E84B,0xBE533904,0x556B53CE,0x3E63E8D9 data4 0x63A98DC8,0x3E212C89,0x032A7A22,0xBE33138F data4 0xBC584008,0x3E530FA9,0xCCB93C97,0xBE6ADF82 data4 0x8370EA39,0x3E5F9113,0xFB6A05D8,0x3E5443A4 data4 0x181FEE7A,0x3E63DACD,0xF0F67DEC,0xBE62B29D data4 0x3DDE6307,0x3E65C483,0xD40A24C1,0x3E5BF030  data4 0x14E437BE,0x3E658B8F,0xED98B6C7,0xBE631C29 data4 0x04CF7C71,0x3E6335D2,0xE954A79D,0x3E529EED data4 0xF64A2FB8,0x3E5D9257,0x854ED06C,0xBE6BED1B data4 0xD71405CB,0x3E5096F6,0xACB9FDF5,0xBE3D4893 data4 0x01B68349,0xBDFEB158,0xC6A463B9,0x3E628D35 data4 0xADE45917,0xBE559725,0x042FC476,0xBE68C29C data4 0x01E511FA,0xBE67593B,0x398801ED,0xBE4A4313 data4 0xDA7C3300,0x3E699571,0x08062A9E,0x3E5349BE data4 0x755BB28E,0x3E5229C4,0x77A1F80D,0x3E67E426 data4 0x6B69C352,0xBE52B33F,0x084DA57F,0xBE6B3550 data4 0xD1D09A20,0xBE6DB03F,0x2161B2C1,0xBE60CBC4 data4 0x78A2B771,0x3E56ED9C,0x9D0FA795,0xBE508E31 data4 0xFD1A54E9,0xBE59482A,0xB07FD23E,0xBE2A17CE data4 0x17365712,0x3E68BF5C,0xB3785569,0x3E3956F9ASM_SIZE_DIRECTIVE(Constants_exp_64_W2)GR_SAVE_PFS         = r59GR_SAVE_B0          = r60GR_SAVE_GP          = r61GR_Parameter_X      = r62GR_Parameter_Y      = r63GR_Parameter_RESULT = r64GR_Parameter_TAG    = r65 FR_X                = f9FR_Y                = f9FR_RESULT           = f99.section .text.proc expm1l#

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -