⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 e_expf.s

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 S
📖 第 1 页 / 共 2 页
字号:
.file "expf.s"// Copyright (C) 2000, 2001, Intel Corporation// All rights reserved.//// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.//// Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at// http://developer.intel.com/opensource.// History//==============================================================// 4/04/00  Unwind update// 4/04/00  Unwind support added// 8/15/00  Bundle added after call to __libm_error_support to properly//          set [the previously overwritten] GR_Parameter_RESULT.// 8/21/00  Improvements to save 2 cycles on main path, and shorten x=0 case// 12/07/00 Widen main path, shorten x=inf, nan paths//#include "libm_support.h"// Assembly macros//==============================================================// integer registers used exp_GR_0x0f                = r33 exp_GR_0xf0                = r34 EXP_AD_P_1                 = r36 EXP_AD_P_2                 = r37 EXP_AD_T1                  = r38 EXP_AD_T2                  = r39 exp_GR_Mint                = r40 exp_GR_Mint_p_128          = r41 exp_GR_Ind1                = r42 EXP_AD_M1                  = r43 exp_GR_Ind2                = r44 EXP_AD_M2                  = r45 exp_GR_min_oflow           = r46 exp_GR_max_zero            = r47 exp_GR_max_norm            = r48 exp_GR_max_uflow           = r49 exp_GR_min_norm            = r50 exp_GR_17ones              = r51 exp_GR_gt_ln               = r52 exp_GR_T2_size             = r53 exp_GR_17ones_m1           = r56 exp_GR_one                 = r57GR_SAVE_B0                    = r53GR_SAVE_PFS                   = r55GR_SAVE_GP                    = r54 GR_Parameter_X                = r59GR_Parameter_Y                = r60GR_Parameter_RESULT           = r61GR_Parameter_TAG              = r62FR_X             = f10FR_Y             = f1FR_RESULT        = f8// floating point registers used EXP_MIN_SGL_OFLOW_ARG      = f11 EXP_MAX_SGL_ZERO_ARG       = f12 EXP_MAX_SGL_NORM_ARG       = f13 EXP_MAX_SGL_UFLOW_ARG      = f14 EXP_MIN_SGL_NORM_ARG       = f15 exp_coeff_P5               = f32 exp_coeff_P6               = f33 exp_coeff_P3               = f34 exp_coeff_P4               = f35 exp_coeff_P1               = f36 exp_coeff_P2               = f37 exp_Mx                     = f38 exp_Mfloat                 = f39 exp_R                      = f40 exp_P1                     = f41 exp_P2                     = f42 exp_P3                     = f43 exp_Rsq                    = f44 exp_R4                     = f45 exp_P4                     = f46 exp_P5                     = f47 exp_P6                     = f48 exp_P7                     = f49 exp_T1                     = f50 exp_T2                     = f51 exp_T                      = f52 exp_A                      = f53 exp_norm_f8                = f54 exp_wre_urm_f8             = f55 exp_ftz_urm_f8             = f56 exp_gt_pln                 = f57#ifdef _LIBC.rodata#else.data#endif.align 16exp_coeff_1_table:ASM_TYPE_DIRECTIVE(exp_coeff_1_table,@object)data8 0x3F56F35FDE4F8563 // p5data8 0x3F2A378BEFECCFDD // p6data8 0x3FE00000258C581D // p1data8 0x3FC555557AE7B3D4 // p2ASM_SIZE_DIRECTIVE(exp_coeff_1_table)exp_coeff_2_table:ASM_TYPE_DIRECTIVE(exp_coeff_2_table,@object)data8 0x3FA5551BB6592FAE // p3data8 0x3F8110E8EBFFD485 // p4ASM_SIZE_DIRECTIVE(exp_coeff_2_table)exp_T2_table:ASM_TYPE_DIRECTIVE(exp_T2_table,@object)data8 0xa175cf9cd7d85844 , 0x00003f46 // exp(-128)data8 0xdb7279415a1f9eed , 0x00003f47 // exp(-127)data8 0x95213b242bd8ca5f , 0x00003f49 // exp(-126)data8 0xcab03c968c989f83 , 0x00003f4a // exp(-125)data8 0x89bdb674702961ad , 0x00003f4c // exp(-124)data8 0xbb35a2eec278be35 , 0x00003f4d // exp(-123)data8 0xfe71b17f373e7e7a , 0x00003f4e // exp(-122)data8 0xace9a6ec52a39b63 , 0x00003f50 // exp(-121)data8 0xeb03423fe393cf1c , 0x00003f51 // exp(-120)data8 0x9fb52c5bcaef1693 , 0x00003f53 // exp(-119)data8 0xd910b6377ed60bf1 , 0x00003f54 // exp(-118)data8 0x9382dad8a9fdbfe4 , 0x00003f56 // exp(-117)data8 0xc87d0a84dea869a3 , 0x00003f57 // exp(-116)data8 0x883efb4c6d1087b0 , 0x00003f59 // exp(-115)data8 0xb92d7373dce9a502 , 0x00003f5a // exp(-114)data8 0xfbaeb020577fb0cb , 0x00003f5b // exp(-113)ASM_SIZE_DIRECTIVE(exp_T2_table)exp_T1_table:ASM_TYPE_DIRECTIVE(exp_T1_table,@object)data8 0x8000000000000000 , 0x00003fff // exp(16 * 0)data8 0x87975e8540010249 , 0x00004016 // exp(16 * 1) data8 0x8fa1fe625b3163ec , 0x0000402d // exp(16 * 2) data8 0x9826b576512a59d7 , 0x00004044 // exp(16 * 3) data8 0xa12cc167acbe6902 , 0x0000405b // exp(16 * 4) data8 0xaabbcdcc279f59e4 , 0x00004072 // exp(16 * 5) data8 0xb4dbfaadc045d16f , 0x00004089 // exp(16 * 6) data8 0xbf95e372ccdbf146 , 0x000040a0 // exp(16 * 7) data8 0xcaf2a62eea10bbfb , 0x000040b7 // exp(16 * 8) data8 0xd6fbeb62fddbd340 , 0x000040ce // exp(16 * 9) data8 0xe3bbee32e4a440ea , 0x000040e5 // exp(16 * 10)data8 0xf13d8517c34199a8 , 0x000040fc // exp(16 * 11)data8 0xff8c2b166241eedd , 0x00004113 // exp(16 * 12)data8 0x875a04c0b38d6129 , 0x0000412b // exp(16 * 13)data8 0x8f610127db6774d7 , 0x00004142 // exp(16 * 14)data8 0x97e1dd87e5c20bb6 , 0x00004159 // exp(16 * 15)ASM_SIZE_DIRECTIVE(exp_T1_table)// Argument Reduction//  exp_Mx = (int)f8            ==> The value of f8 rounded to int is placed into the//                                  significand of exp_Mx as a two's//                                  complement number.// Later we want to have exp_Mx in a general register. Do this with a getf.sig// and call the general register exp_GR_Mint//  exp_Mfloat = (float)(int)f8 ==> the two's complement number in//                                  significand of exp_Mx is turned//                                  into a floating point number.//  R = 1 - exp_Mfloat          ==> reduced argument// Core Approximation// Calculate a series in R//  R * p6 + p5//  R * p4 + p3//  R * p2 + p1//  R^2//  R^4//  R^2(R * p6 + p5) + (R * p4 + p3)//  R^2(R * p2 + p1)//  R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))//  R + 1//  exp(R) = (1 + R) + R^4(R^2(R * p6 + p5) + (R * p4 + p3)) + (R^2(R * p2 + p1))//  exp(R) = 1 + R + R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6// Reconstruction// signficand of exp_Mx is two's complement,// -103 < x < 89// The smallest single denormal is 2^-149 = ssdn//    For e^x = ssdn//        x   = log(ssdn) = -103.279//    But with rounding result goes to ssdn until -103.972079// The largest single normal is  1.<23 1's> 2^126 ~ 2^127 = lsn//    For e^x = lsn//        x   = log(lsn) = 88.7228//// expf overflows                       when x > 42b17218 = 88.7228// expf returns largest single denormal when x = c2aeac50// expf goes to zero when                    x < c2cff1b5 // Consider range of 8-bit two's complement, -128 ---> 127// Add 128; range becomes                       0 ---> 255// The number (=i) in 0 ---> 255 is used as offset into two tables.// i = abcd efgh = abcd * 16 + efgh = i1 * 16 + i2// i1 = (exp_GR_Mint + 128)  & 0xf0 (show 0xf0 as -0x10 to avoid assembler error)//                                  (The immediate in the AND is an 8-bit two's complement)// i1 = i1 + start of T1 table (EXP_AD_T1)//    Note that the entries in T1 are double-extended numbers on 16-byte boundaries//    and that i1 is already shifted left by 16 after the AND.// i2 must be shifted left by 4 before adding to the start of the table.// i2 = ((exp_GR_Mint + 128)  & 0x0f) << 4// i2 = i2 + start of T2 table (EXP_AD_T2)// T      = T1 * T2// A      = T * (1 + R)// answer = T *  (R^2 * p1 + R^3 * p2 + R^4 * p3 + R^5 * p4 + R^6 * p5 + R^7 * p6) +//          T *  (1 + R)//        = T * exp(R).global expf#.section .text.proc  expf#.align 32expf:#ifdef _LIBC.global __ieee754_expf#__ieee754_expf:#endif{ .mfi     alloc      r32            = ar.pfs,1,26,4,0     fcvt.fx.s1   exp_Mx       =    f8     mov       exp_GR_17ones   =    0x1FFFF}{ .mlx     addl      EXP_AD_P_1      =    @ltoff(exp_coeff_1_table),gp     movl      exp_GR_min_oflow = 0x42b17218    };;// Fnorm done to take any enabled faults{ .mfi     ld8       EXP_AD_P_1      =  [EXP_AD_P_1]     fclass.m  p6,p0      = f8, 0x07	//@zero     nop.i 999}{ .mfi     add       exp_GR_max_norm = -1, exp_GR_min_oflow  // 0x42b17217     fnorm     exp_norm_f8     =    f8     nop.i 999};;{ .mfi     setf.s    EXP_MIN_SGL_OFLOW_ARG = exp_GR_min_oflow  // 0x42b17218     fclass.m  p7,p0      = f8, 0x22	// Test for x=-inf     mov       exp_GR_0xf0 = 0x0f0}{ .mlx     setf.s    EXP_MAX_SGL_NORM_ARG = exp_GR_max_norm     movl      exp_GR_max_zero = 0xc2cff1b5    };;{ .mlx     mov       exp_GR_0x0f = 0x00f     movl      exp_GR_max_uflow = 0xc2aeac50    }{ .mfb     nop.m 999(p6) fma.s     f8 = f1,f1,f0(p6) br.ret.spnt   b0        // quick exit for x=0};;{ .mfi     setf.s    EXP_MAX_SGL_ZERO_ARG = exp_GR_max_zero     fclass.m  p8,p0      = f8, 0x21	// Test for x=+inf     adds      exp_GR_min_norm = 1, exp_GR_max_uflow  // 0xc2aeac51}{ .mfb     ldfpd     exp_coeff_P5,exp_coeff_P6     =    [EXP_AD_P_1],16(p7) fma.s     f8 = f0,f0,f0(p7) br.ret.spnt   b0        // quick exit for x=-inf};;{ .mmf     ldfpd     exp_coeff_P1,exp_coeff_P2     =    [EXP_AD_P_1],16     setf.s    EXP_MAX_SGL_UFLOW_ARG = exp_GR_max_uflow     fclass.m  p9,p0      = f8, 0xc3	// Test for x=nan};;{ .mmb     ldfpd     exp_coeff_P3,exp_coeff_P4     =    [EXP_AD_P_1],16     setf.s    EXP_MIN_SGL_NORM_ARG = exp_GR_min_norm(p8) br.ret.spnt   b0        // quick exit for x=+inf};;// EXP_AD_P_1 now points to exp_T2_table{ .mfi     mov exp_GR_T2_size           = 0x100     fcvt.xf   exp_Mfloat     =    exp_Mx     nop.i 999};;{ .mfb     getf.sig  exp_GR_Mint    =    exp_Mx(p9) fmerge.s     f8 = exp_norm_f8, exp_norm_f8(p9) br.ret.spnt   b0        // quick exit for x=nan};;{ .mmi     nop.m 999     mov      EXP_AD_T2       =  EXP_AD_P_1     add      EXP_AD_T1       =  exp_GR_T2_size,EXP_AD_P_1 ;;}{ .mmi     adds      exp_GR_Mint_p_128   =    0x80,exp_GR_Mint ;;     and       exp_GR_Ind1      =    exp_GR_Mint_p_128, exp_GR_0xf0     and       exp_GR_Ind2      =    exp_GR_Mint_p_128, exp_GR_0x0f ;;}// Divide arguments into the following categories://  Certain Underflow/zero  p11 - -inf < x <= MAX_SGL_ZERO_ARG //  Certain Underflow       p12 - MAX_SGL_ZERO_ARG < x <= MAX_SGL_UFLOW_ARG //  Possible Underflow      p13 - MAX_SGL_UFLOW_ARG < x < MIN_SGL_NORM_ARG//  Certain Safe                - MIN_SGL_NORM_ARG <= x <= MAX_SGL_NORM_ARG//  Possible Overflow       p14 - MAX_SGL_NORM_ARG < x < MIN_SGL_OFLOW_ARG//  Certain Overflow        p15 - MIN_SGL_OFLOW_ARG <= x < +inf//

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -