⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_atanl.s

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 S
📖 第 1 页 / 共 3 页
字号:
.file "atanl.s"// Copyright (C) 2000, 2001, Intel Corporation// All rights reserved.// // Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource.////// *********************************************************************//// History// 2/02/00  (hand-optimized)// 4/04/00  Unwind support added// 8/15/00  Bundle added after call to __libm_error_support to properly//          set [the previously overwritten] GR_Parameter_RESULT.//// *********************************************************************//// Function:   atanl(x) = inverse tangent(x), for double extended x values// Function:   atan2l(y,x) = atan(y/x), for double extended x values//// *********************************************************************//// Resources Used:////    Floating-Point Registers: f8 (Input and Return Value)//                              f9-f15//                              f32-f79////    General Purpose Registers://      r32-r48//      r49,r50,r51,r52 (Arguments to error support for 0,0 case)////    Predicate Registers:      p6-p15//// *********************************************************************//// IEEE Special Conditions:////    Denormal  fault raised on denormal inputs//    Underflow exceptions may occur //    Special error handling for the y=0 and x=0 case//    Inexact raised when appropriate by algorithm////    atanl(SNaN) = QNaN//    atanl(QNaN) = QNaN//    atanl(+/-0) = +/- 0//    atanl(+/-Inf) = +/-pi/2 ////    atan2l(Any NaN for x or y) = QNaN//    atan2l(+/-0,x) = +/-0 for x > 0 //    atan2l(+/-0,x) = +/-pi for x < 0 //    atan2l(+/-0,+0) = +/-0 //    atan2l(+/-0,-0) = +/-pi //    atan2l(y,+/-0) = pi/2 y > 0//    atan2l(y,+/-0) = -pi/2 y < 0//    atan2l(+/-y, Inf) = +/-0 for finite y > 0//    atan2l(+/-Inf, x) = +/-pi/2 for finite x //    atan2l(+/-y, -Inf) = +/-pi for finite  y > 0 //    atan2l(+/-Inf, Inf) = +/-pi/4//    atan2l(+/-Inf, -Inf) = +/-3pi/4//// *********************************************************************//// Mathematical Description// ---------------------------//// The function ATANL( Arg_Y, Arg_X ) returns the "argument"// or the "phase" of the complex number////           Arg_X + i Arg_Y//// or equivalently, the angle in radians from the positive// x-axis to the line joining the origin and the point// (Arg_X,Arg_Y)//////        (Arg_X, Arg_Y) x//                        \ //                \ //                 \ //                  \ //                   \ angle between is ATANL(Arg_Y,Arg_X)//                    \ //                     ------------------> X-axis//                   Origin//// Moreover, this angle is reported in the range [-pi,pi] thus////      -pi <= ATANL( Arg_Y, Arg_X ) <= pi.//// From the geometry, it is easy to define ATANL when one of// Arg_X or Arg_Y is +-0 or +-inf://////      \ Y |//     X \  |  +0  | -0  |  +inf |  -inf  |  finite non-zero//        \ |      |     |       |        |//    ______________________________________________________//          |            |       |        |//     +-0  |   Invalid/ |  pi/2 | -pi/2  |  sign(Y)*pi/2//          |    qNaN    |       |        |//  --------------------------------------------------------//          |      |     |       |        |//     +inf |  +0  | -0  |  pi/4 | -pi/4  |  sign(Y)*0//  --------------------------------------------------------//          |      |     |       |        |//     -inf |  +pi | -pi | 3pi/4 | -3pi/4 |  sign(Y)*pi//  --------------------------------------------------------//   finite |    X>0?    |  pi/2 | -pi/2  |  normal case//  non-zero| sign(Y)*0: |       |        |//       | sign(Y)*pi |       |        |////// One must take note that ATANL is NOT the arctangent of the// value Arg_Y/Arg_X; but rather ATANL and arctan are related// in a slightly more complicated way as follows://// Let U := max(|Arg_X|, |Arg_Y|);  V := min(|Arg_X|, |Arg_Y|);// sign_X be the sign bit of Arg_X, i.e., sign_X is 0 or 1;// s_X    be the sign     of Arg_X, i.e., s_X = (-1)^sign_X;//// sign_Y be the sign bit of Arg_Y, i.e., sign_Y is 0 or 1;// s_Y    be the sign     of Arg_Y, i.e., s_Y = (-1)^sign_Y;//// swap   be 0  if |Arg_X| >= |Arg_Y|  and 1 otherwise.//// Then, ATANL(Arg_Y, Arg_X) =////       /    arctan(V/U)     \      sign_X = 0 & swap = 0//       | pi/2 - arctan(V/U) |      sign_X = 0 & swap = 1// s_Y * |                    |//       |  pi  - arctan(V/U) |      sign_X = 1 & swap = 0//       \ pi/2 + arctan(V/U) /      sign_X = 1 & swap = 1////// This relationship also suggest that the algorithm's major// task is to calculate arctan(V/U) for 0 < V <= U; and the// final Result is given by////      s_Y * { (P_hi + P_lo) + sigma * arctan(V/U) }//// where////   (P_hi,P_lo) represents M(sign_X,swap)*(pi/2) accurately////   M(sign_X,swap) = 0  for sign_X = 0 and swap = 0//              1  for swap   = 1//              2  for sign_X = 1 and swap = 0//// and////   sigma = { (sign_X  XOR  swap) :  -1.0 : 1.0 }////      =  (-1) ^ ( sign_X XOR swap )//// Both (P_hi,P_lo) and sigma can be stored in a table and fetched// using (sign_X,swap) as an index. (P_hi, P_lo) can be stored as a// double-precision, and single-precision pair; and sigma can// obviously be just a single-precision number.//// In the algorithm we propose, arctan(V/U) is calculated to high accuracy// as A_hi + A_lo. Consequently, the Result ATANL( Arg_Y, Arg_X ) is// given by////    s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)//// We now discuss the calculation of arctan(V/U) for 0 < V <= U.//// For (V/U) < 2^(-3), we use a simple polynomial of the form////      z + z^3*(P_1 + z^2*(P_2 + z^2*(P_3 + ... + P_8)))//// where z = V/U.//// For the sake of accuracy, the first term "z" must approximate V/U to// extra precision. For z^3 and higher power, a working precision// approximation to V/U suffices. Thus, we obtain:////      z_hi + z_lo = V/U  to extra precision and//      z           = V/U  to working precision//// The value arctan(V/U) is delivered as two pieces (A_hi, A_lo)////      (A_hi,A_lo) = (z_hi, z^3*(P_1 + ... + P_8) + z_lo).////// For 2^(-3) <= (V/U) <= 1, we use a table-driven approach.// Consider////      (V/U) = 2^k * 1.b_1 b_2 .... b_63 b_64 b_65 ....//// Define////       z_hi = 2^k * 1.b_1 b_2 b_3 b_4 1//// then//                                            /                \ //                                            |  (V/U) - z_hi  |//      arctan(V/U) = arctan(z_hi) + acrtan| -------------- |//                                            | 1 + (V/U)*z_hi |//                                            \                /////                                            /                \ //                                            |   V - z_hi*U   |//                  = arctan(z_hi) + acrtan| -------------- |//                                            |   U + V*z_hi   |//                                            \                /////                  = arctan(z_hi) + acrtan( V' / U' )////// where////      V' = V - U*z_hi;   U' = U + V*z_hi.//// Let////      w_hi + w_lo  = V'/U' to extra precision and//           w       = V'/U' to working precision//// then we can approximate arctan(V'/U') by////      arctan(V'/U') = w_hi + w_lo//                     + w^3*(Q_1 + w^2*(Q_2 + w^2*(Q_3 + w^2*Q_4)))////                       = w_hi + w_lo + poly//// Finally, arctan(z_hi) is calculated beforehand and stored in a table// as Tbl_hi, Tbl_lo. Thus,////      (A_hi, A_lo) = (Tbl_hi, w_hi+(poly+(w_lo+Tbl_lo)))//// This completes the mathematical description.////// Algorithm// -------------//// Step 0. Check for unsupported format.////    If//       ( expo(Arg_X) not zero AND msb(Arg_X) = 0 ) OR//       ( expo(Arg_Y) not zero AND msb(Arg_Y) = 0 )////    then one of the arguments is unsupported. Generate an//    invalid and return qNaN.//// Step 1. Initialize////    Normalize Arg_X and Arg_Y and set the following////    sign_X :=  sign_bit(Arg_X)//    s_Y    := (sign_bit(Arg_Y)==0? 1.0 : -1.0)//    swap   := (|Arg_X| >= |Arg_Y|?   0 :  1  )//    U      := max( |Arg_X|, |Arg_Y| )//    V      := min( |Arg_X|, |Arg_Y| )////    execute: frcap E, pred, V, U//    If pred is 0, go to Step 5 for special cases handling.//// Step 2. Decide on branch.////    Q := E * V//    If Q < 2^(-3) go to Step 4 for simple polynomial case.//// Step 3. Table-driven algorithm.////    Q is represented as////      2^(-k) * 1.b_1 b_2 b_3 ... b_63; k = 0,-1,-2,-3//// and that if k = 0, b_1 = b_2 = b_3 = b_4 = 0.//// Define////      z_hi := 2^(-k) * 1.b_1 b_2 b_3 b_4 1//// (note that there are 49 possible values of z_hi).////      ...We now calculate V' and U'. While V' is representable//      ...as a 64-bit number because of cancellation, U' is//      ...not in general a 64-bit number. Obtaining U' accurately//      ...requires two working precision numbers////      U_prime_hi := U + V * z_hi            ...WP approx. to U'//      U_prime_lo := ( U - U_prime_hi ) + V*z_hi ...observe order//      V_prime    := V - U * z_hi             ...this is exact////         C_hi := frcpa (1.0, U_prime_hi)  ...C_hi approx 1/U'_hi////      loop 3 times//         C_hi := C_hi + C_hi*(1.0 - C_hi*U_prime_hi)////      ...at this point C_hi is (1/U_prime_hi) to roughly 64 bits////      w_hi := V_prime * C_hi     ...w_hi is V_prime/U_prime to//                     ...roughly working precision////         ...note that we want w_hi + w_lo to approximate//      ...V_prime/(U_prime_hi + U_prime_lo) to extra precision//         ...but for now, w_hi is good enough for the polynomial//      ...calculation.////         wsq  := w_hi*w_hi//      poly := w_hi*wsq*(Q_1 + wsq*(Q_2 + wsq*(Q_3 + wsq*Q_4)))////      Fetch//      (Tbl_hi, Tbl_lo) = atan(z_hi) indexed by (k,b_1,b_2,b_3,b_4)//      ...Tbl_hi is a double-precision number//      ...Tbl_lo is a single-precision number////         (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)//      ...as discussed previous. Again; the implementation can//      ...chose to fetch P_hi and P_lo from a table indexed by//      ...(sign_X, swap).//      ...P_hi is a double-precision number;//      ...P_lo is a single-precision number.////      ...calculate w_lo so that w_hi + w_lo is V'/U' accurately//         w_lo := ((V_prime - w_hi*U_prime_hi) -//              w_hi*U_prime_lo) * C_hi     ...observe order//////      ...Ready to deliver arctan(V'/U') as A_hi, A_lo//      A_hi := Tbl_hi//      A_lo := w_hi + (poly + (Tbl_lo + w_lo)) ...observe order////      ...Deliver final Result//      ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)////      sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )//      ...sigma can be obtained by a table lookup using//      ...(sign_X,swap) as index and stored as single precision//         ...sigma should be calculated earlier////      P_hi := s_Y*P_hi//      A_hi := s_Y*A_hi////      Res_hi := P_hi + sigma*A_hi     ...this is exact because//                          ...both P_hi and Tbl_hi//                          ...are double-precision//                          ...and |Tbl_hi| > 2^(-4)//                          ...P_hi is either 0 or//                          ...between (1,4)////      Res_lo := sigma*A_lo + P_lo////      Return Res_hi + s_Y*Res_lo in user-defined rounding control//// Step 4. Simple polynomial case.////    ...E and Q are inherited from Step 2.////    A_hi := Q     ...Q is inherited from Step 2 Q approx V/U////    loop 3 times//       E := E + E2(1.0 - E*U1//    ...at this point E approximates 1/U to roughly working precision////    z := V * E     ...z approximates V/U to roughly working precision//    zsq := z * z//    z8 := zsq * zsq; z8 := z8 * z8////    poly1 := P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))//    poly2 := zsq*(P_1 + zsq*(P_2 + zsq*P_3))////    poly  := poly1 + z8*poly2////    z_lo := (V - A_hi*U)*E////    A_lo := z*poly + z_lo//    ...A_hi, A_lo approximate arctan(V/U) accurately////    (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)//    ...one can store the M(sign_X,swap) as single precision//    ...values////    ...Deliver final Result//    ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)////    sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )//    ...sigma can be obtained by a table lookup using//    ...(sign_X,swap) as index and stored as single precision//    ...sigma should be calculated earlier////    P_hi := s_Y*P_hi//    A_hi := s_Y*A_hi////    Res_hi := P_hi + sigma*A_hi          ...need to compute//                          ...P_hi + sigma*A_hi//                          ...exactly////    tmp    := (P_hi - Res_hi) + sigma*A_hi////    Res_lo := s_Y*(sigma*A_lo + P_lo) + tmp////    Return Res_hi + Res_lo in user-defined rounding control//// Step 5. Special Cases////    If pred is 0 where pred is obtained in//        frcap E, pred, V, U////    we are in one of those special cases of 0,+-inf or NaN////    If one of U and V is NaN, return U+V (which will generate//    invalid in case one is a signaling NaN). Otherwise,//    return the Result as described in the table////////      \ Y |//     X \  |  +0  | -0  |  +inf |  -inf  |  finite non-zero//        \ |      |     |       |        |//    ______________________________________________________//          |            |       |        |//     +-0  |   Invalid/ |  pi/2 | -pi/2  |  sign(Y)*pi/2//          |    qNaN    |       |        |//  --------------------------------------------------------//          |      |     |       |        |//     +inf |  +0  | -0  |  pi/4 | -pi/4  |  sign(Y)*0//  --------------------------------------------------------//          |      |     |       |        |//     -inf |  +pi | -pi | 3pi/4 | -3pi/4 |  sign(Y)*pi//  --------------------------------------------------------//   finite |    X>0?    |  pi/2 | -pi/2  |//  non-zero| sign(Y)*0: |       |        |      N/A//       | sign(Y)*pi |       |        |////#include "libm_support.h"ArgY_orig   =   f8Result      =   f8FR_RESULT   =   f8ArgX_orig   =   f9ArgX        =   f10FR_X        =   f10ArgY        =   f11FR_Y        =   f11s_Y         =   f12U           =   f13V           =   f14E           =   f15Q           =   f32z_hi        =   f33U_prime_hi  =   f34U_prime_lo  =   f35V_prime     =   f36C_hi        =   f37w_hi        =   f38w_lo        =   f39wsq         =   f40poly        =   f41Tbl_hi      =   f42Tbl_lo      =   f43P_hi        =   f44P_lo        =   f45A_hi        =   f46A_lo        =   f47sigma       =   f48Res_hi      =   f49Res_lo      =   f50Z           =   f52zsq         =   f53z8          =   f54poly1       =   f55poly2       =   f56z_lo        =   f57tmp         =   f58P_1         =   f59Q_1         =   f60P_2         =   f61Q_2         =   f62P_3         =   f63Q_3         =   f64P_4         =   f65Q_4         =   f66P_5         =   f67P_6         =   f68P_7         =   f69P_8         =   f70TWO_TO_NEG3 =   f71U_hold      =   f72C_hi_hold   =   f73E_hold      =   f74M           =   f75ArgX_abs    =   f76ArgY_abs    =   f77Result_lo   =   f78A_temp      =   f79GR_SAVE_PFS   = r33GR_SAVE_B0    = r34GR_SAVE_GP    = r35sign_X        = r36sign_Y        = r37 swap          = r38 table_ptr1    = r39 table_ptr2    = r40 k             = r41 lookup        = r42 exp_ArgX      = r43 exp_ArgY      = r44 exponent_Q    = r45 significand_Q = r46 special       = r47 special1      = r48 GR_Parameter_X      = r49GR_Parameter_Y      = r50GR_Parameter_RESULT = r51GR_Parameter_TAG    = r52int_temp            = r52#ifdef _LIBC.rodata#else.data#endif.align 64 Constants_atan:ASM_TYPE_DIRECTIVE(Constants_atan,@object)data4    0x54442D18, 0x3FF921FB, 0x248D3132, 0x3E000000//       double pi/2, single lo_pi/2, two**(-3)data4    0xAAAAAAA3, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // P_1data4    0xCCCC54B2, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // P_2data4    0x47E4D0C2, 0x92492492, 0x0000BFFC, 0x00000000 // P_3data4    0x58870889, 0xE38E38E0, 0x00003FFB, 0x00000000 // P_4data4    0x290149F8, 0xBA2E895B, 0x0000BFFB, 0x00000000 // P_5data4    0x250F733D, 0x9D88E6D4, 0x00003FFB, 0x00000000 // P_6data4    0xFB8745A0, 0x884E51FF, 0x0000BFFB, 0x00000000 // P_7data4    0x394396BD, 0xE1C7412B, 0x00003FFA, 0x00000000 // P_8data4    0xAAAAA52F, 0xAAAAAAAA, 0x0000BFFD, 0x00000000 // Q_1data4    0xC75B60D3, 0xCCCCCCCC, 0x00003FFC, 0x00000000 // Q_2data4    0x011F1940, 0x924923AD, 0x0000BFFC, 0x00000000 // Q_3data4    0x2A5F89BD, 0xE36F716D, 0x00003FFB, 0x00000000 // Q_4////    Entries Tbl_hi  (double precision)//    B = 1+Index/16+1/32  Index = 0//    Entries Tbl_lo (single precision)//    B = 1+Index/16+1/32  Index = 0//data4   0xA935BD8E, 0x3FE9A000, 0x23ACA08F, 0x00000000////    Entries Tbl_hi  (double precision) Index = 0,1,...,15//    B = 2^(-1)*(1+Index/16+1/32)//    Entries Tbl_lo (single precision)//    Index = 0,1,...,15  B = 2^(-1)*(1+Index/16+1/32)//data4   0x7F175A34, 0x3FDE77EB, 0x238729EE, 0x00000000data4   0x73C1A40B, 0x3FE0039C, 0x249334DB, 0x00000000data4   0x5B5B43DA, 0x3FE0C614, 0x22CBA7D1, 0x00000000data4   0x88BE7C13, 0x3FE1835A, 0x246310E7, 0x00000000data4   0xE2CC9E6A, 0x3FE23B71, 0x236210E5, 0x00000000data4   0x8406CBCA, 0x3FE2EE62, 0x2462EAF5, 0x00000000data4   0x1CD41719, 0x3FE39C39, 0x24B73EF3, 0x00000000data4   0x5B795B55, 0x3FE44506, 0x24C11260, 0x00000000data4   0x5BB6EC04, 0x3FE4E8DE, 0x242519EE, 0x00000000data4   0x1F732FBA, 0x3FE587D8, 0x24D4346C, 0x00000000data4   0x115D7B8D, 0x3FE6220D, 0x24ED487B, 0x00000000data4   0x920B3D98, 0x3FE6B798, 0x2495FF1E, 0x00000000data4   0x8FBA8E0F, 0x3FE74897, 0x223D9531, 0x00000000data4   0x289FA093, 0x3FE7D528, 0x242B0411, 0x00000000data4   0x576CC2C5, 0x3FE85D69, 0x2335B374, 0x00000000data4   0xA99CC05D, 0x3FE8E17A, 0x24C27CFB, 0x00000000////    Entries Tbl_hi  (double precision) Index = 0,1,...,15//    B = 2^(-2)*(1+Index/16+1/32)//    Entries Tbl_lo (single precision)//    Index = 0,1,...,15  B = 2^(-2)*(1+Index/16+1/32)//data4    0x510665B5, 0x3FD025FA, 0x24263482, 0x00000000data4    0x362431C9, 0x3FD1151A, 0x242C8DC9, 0x00000000data4    0x67E47C95, 0x3FD20255, 0x245CF9BA, 0x00000000data4    0x7A823CFE, 0x3FD2ED98, 0x235C892C, 0x00000000data4    0x29271134, 0x3FD3D6D1, 0x2389BE52, 0x00000000data4    0x586890E6, 0x3FD4BDEE, 0x24436471, 0x00000000data4    0x175E0F4E, 0x3FD5A2E0, 0x2389DBD4, 0x00000000data4    0x9F5FA6FD, 0x3FD68597, 0x2476D43F, 0x00000000data4    0x52817501, 0x3FD76607, 0x24711774, 0x00000000data4    0xB8DF95D7, 0x3FD84422, 0x23EBB501, 0x00000000data4    0x7CD0C662, 0x3FD91FDE, 0x23883A0C, 0x00000000data4    0x66168001, 0x3FD9F930, 0x240DF63F, 0x00000000data4    0x5422058B, 0x3FDAD00F, 0x23FE261A, 0x00000000data4    0x378624A5, 0x3FDBA473, 0x23A8CD0E, 0x00000000data4    0x0AAD71F8, 0x3FDC7655, 0x2422D1D0, 0x00000000data4    0xC9EC862B, 0x3FDD45AE, 0x2344A109, 0x00000000////    Entries Tbl_hi  (double precision) Index = 0,1,...,15//    B = 2^(-3)*(1+Index/16+1/32)//    Entries Tbl_lo (single precision)//    Index = 0,1,...,15  B = 2^(-3)*(1+Index/16+1/32)//data4    0x84212B3D, 0x3FC068D5, 0x239874B6, 0x00000000data4    0x41060850, 0x3FC16465, 0x2335E774, 0x00000000data4    0x171A535C, 0x3FC25F6E, 0x233E36BE, 0x00000000data4    0xEDEB99A3, 0x3FC359E8, 0x239680A3, 0x00000000data4    0xC6092A9E, 0x3FC453CE, 0x230FB29E, 0x00000000data4    0xBA11570A, 0x3FC54D18, 0x230C1418, 0x00000000data4    0xFFB3AA73, 0x3FC645BF, 0x23F0564A, 0x00000000data4    0xE8A7D201, 0x3FC73DBD, 0x23D4A5E1, 0x00000000data4    0xE398EBC7, 0x3FC8350B, 0x23D4ADDA, 0x00000000data4    0x7D050271, 0x3FC92BA3, 0x23BCB085, 0x00000000data4    0x601081A5, 0x3FCA217E, 0x23BC841D, 0x00000000data4    0x574D780B, 0x3FCB1696, 0x23CF4A8E, 0x00000000data4    0x4D768466, 0x3FCC0AE5, 0x23BECC90, 0x00000000data4    0x4E1D5395, 0x3FCCFE65, 0x2323DCD2, 0x00000000data4    0x864C9D9D, 0x3FCDF110, 0x23F53F3A, 0x00000000data4    0x451D980C, 0x3FCEE2E1, 0x23CCB11F, 0x00000000data4    0x54442D18, 0x400921FB, 0x33145C07, 0x3CA1A626 // PI two doublesdata4    0x54442D18, 0x3FF921FB, 0x33145C07, 0x3C91A626 // PI_by_2 two dblesdata4    0x54442D18, 0x3FE921FB, 0x33145C07, 0x3C81A626 // PI_by_4 two dblesdata4    0x7F3321D2, 0x4002D97C, 0x4C9E8A0A, 0x3C9A7939 // 3PI_by_4 two dblesASM_SIZE_DIRECTIVE(Constants_atan).text.proc atanl#.global atanl#.align 64atanl: { .mfb	nop.m 999(p0)   mov ArgX_orig = f1 (p0)   br.cond.sptk atan2l ;;}.endp atanl

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -