⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_nearbyint.s

📁 Glibc 2.3.2源代码(解压后有100多M)
💻 S
字号:
.file "nearbyint.s"// Copyright (C) 2000, 2001, Intel Corporation// All rights reserved.// // Contributed 10/19/2000 by John Harrison, Cristina Iordache, Ted Kubaska,// Bob Norin, Tom Rowan, Shane Story, and Ping Tak Peter Tang of the// Computational Software Lab, Intel Corporation.//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met://// * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//// * Redistributions in binary form must reproduce the above copyright// notice, this list of conditions and the following disclaimer in the// documentation and/or other materials provided with the distribution.//// * The name of Intel Corporation may not be used to endorse or promote// products derived from this software without specific prior written// permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Intel Corporation is the author of this code, and requests that all// problem reports or change requests be submitted to it directly at // http://developer.intel.com/opensource.//// History//==============================================================// 10/19/2000: Created// 2/08/01  Corrected behavior for all rounding modes.//==============================================================//// API//==============================================================// double nearbyint(double x)#include "libm_support.h"//// general registers used:  //nearbyint_GR_signexp   = r14nearbyint_GR_exponent  = r15nearbyint_GR_17ones    = r16nearbyint_GR_10033     = r17nearbyint_GR_fpsr      = r18nearbyint_GR_rcs0      = r19nearbyint_GR_rcs0_mask = r20// predicate registers used: // p6-11// floating-point registers used: NEARBYINT_NORM_f8      = f9                        NEARBYINT_FLOAT_INT_f8 = f10NEARBYINT_INT_f8       = f11// Overview of operation//==============================================================// double nearbyint(double x)// Return an integer value (represented as a double) that is x rounded to integer in current// rounding mode // *******************************************************************************// Set denormal flag for denormal input and// and take denormal fault if necessary.// Is the input an integer value already?// double_extended// if the exponent is >= 1003e => 3F(true) = 63(decimal)// we have a significand of 64 bits 1.63-bits.// If we multiply by 2^63, we no longer have a fractional part// So input is an integer value already.// double// if the exponent is >= 10033 => 34(true) = 52(decimal)// 34 + 3ff = 433// we have a significand of 53 bits 1.52-bits. (implicit 1)// If we multiply by 2^52, we no longer have a fractional part// So input is an integer value already.// single// if the exponent is >= 10016 => 17(true) = 23(decimal)// we have a significand of 53 bits 1.52-bits. (implicit 1)// If we multiply by 2^52, we no longer have a fractional part// So input is an integer value already.// If x is NAN, ZERO, or INFINITY, then  return// qnan snan inf norm     unorm 0 -+// 1    1    1   0        0     1 11     0xe7.align 32.global nearbyint#.section .text.proc  nearbyint#.align 32nearbyint: { .mfi      mov nearbyint_GR_fpsr = ar40    // Read the fpsr--need to check rc.s0      fcvt.fx.s1     NEARBYINT_INT_f8  = f8      addl            nearbyint_GR_10033 = 0x10033, r0}{ .mfi      nop.m 999      fnorm.s1        NEARBYINT_NORM_f8  = f8      mov         nearbyint_GR_17ones    = 0x1FFFF;;}{ .mfi      nop.m 999      fclass.m.unc  p6,p0 = f8, 0xe7      mov         nearbyint_GR_rcs0_mask  = 0x0c00;;}{ .mfb	nop.m 999(p6)  fnorm.d f8 = f8(p6)  br.ret.spnt   b0    // Exit if x nan, inf, zero;;}{ .mfi	nop.m 999      fcvt.xf         NEARBYINT_FLOAT_INT_f8   = NEARBYINT_INT_f8	nop.i 999;;}{ .mfi      getf.exp nearbyint_GR_signexp  = NEARBYINT_NORM_f8      fcmp.eq.s0  p8,p0 = f8,f0      // Dummy op to set denormal        nop.i 999;;}{ .mii	nop.m 999	nop.i 999       and nearbyint_GR_exponent = nearbyint_GR_signexp, nearbyint_GR_17ones;;}{ .mmi      cmp.ge.unc      p7,p6 = nearbyint_GR_exponent, nearbyint_GR_10033      and nearbyint_GR_rcs0 = nearbyint_GR_rcs0_mask, nearbyint_GR_fpsr	nop.i 999;;}// Check to see if s0 rounding mode is round to nearest.  If not then set s2// rounding mode to that of s0 and repeat conversions.L(NEARBYINT_COMMON):{ .mfb      cmp.ne   p11,p0 = nearbyint_GR_rcs0, r0(p6) fclass.m.unc   p9,p10  = NEARBYINT_FLOAT_INT_f8, 0x07  // Test for result=0(p11) br.cond.spnt L(NEARBYINT_NOT_ROUND_NEAREST)  // Branch if not round to nearest;;}{ .mfi	nop.m 999(p7) fnorm.d.s0   f8 = f8	nop.i 999;;}// If result is zero, merge sign of input{ .mfi     nop.m 999(p9) fmerge.s f8 = f8, NEARBYINT_FLOAT_INT_f8     nop.i 999}{ .mfb      nop.m 999(p10) fnorm.d f8 = NEARBYINT_FLOAT_INT_f8     br.ret.sptk    b0;;                             }L(NEARBYINT_NOT_ROUND_NEAREST):// Set rounding mode of s2 to that of s0{ .mfi      mov nearbyint_GR_rcs0 = r0       // Clear so we don't come back here      fsetc.s2     0x7f, 0x40	nop.i 999;;}{ .mfi	nop.m 999      fcvt.fx.s2     NEARBYINT_INT_f8  = f8	nop.i 999;;}{ .mfb	nop.m 999      fcvt.xf         NEARBYINT_FLOAT_INT_f8   = NEARBYINT_INT_f8      br.cond.sptk  L(NEARBYINT_COMMON);;}.endp nearbyintASM_SIZE_DIRECTIVE(nearbyint)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -