📄 md4.c
字号:
/* * md4c.c MD4 message-digest algorithm * * Version: $Id: md4.c,v 1.5.2.1 2004/06/01 10:49:47 phampson Exp $ * * This file is licensed under the LGPL, but is largely derived * from public domain source code. *//*#include "global.h"*//* * FORCE MD4 TO USE OUR MD4 HEADER FILE! * * If we don't do this, it might pick up the systems broken MD4. * - Paul Hampson, (cf Alan DeKok <aland@ox.org> in md5.c) */#include "../include/md4.h"void md4_calc(output, input, inlen)unsigned char *output;const unsigned char *input; /* input block */unsigned int inlen; /* length of input block */{ MD4_CTX context; MD4Init(&context); MD4Update(&context, input, inlen); MD4Final(output, &context);}/* The below was retrieved from * http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/src/lib/libc/hash/md4.c?rev=1.2 * with the following changes: * CVS-$OpenBSD stuff deleted * #includes commented out. * Support context->count as uint32_t[2] instead of uint64_t * Add htole32 define from http://www.squid-cache.org/mail-archive/squid-dev/200307/0130.html * (The bswap32 definition in the patch.) * This is only used on BIG_ENDIAN systems, so we can always swap the bits. *//* * This code implements the MD4 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD4Context structure, pass it to MD4Init, call MD4Update as * needed on buffers full of bytes, and then call MD4Final, which * will fill a supplied 16-byte array with the digest. *//*#include <sys/types.h>*//*#include <string.h>*//*#include <md4.h>*/#if BYTE_ORDER == LITTLE_ENDIAN#define htole32_4(buf) /* Nothing */#define htole32_14(buf) /* Nothing */#define htole32_16(buf) /* Nothing */#else#define htole32(x) \ (((((uint32_t)x) & 0xff000000) >> 24) | \ ((((uint32_t)x) & 0x00ff0000) >> 8) | \ ((((uint32_t)x) & 0x0000ff00) << 8) | \ ((((uint32_t)x) & 0x000000ff) << 24)) #define htole32_4(buf) do { \ (buf)[ 0] = htole32((buf)[ 0]); \ (buf)[ 1] = htole32((buf)[ 1]); \ (buf)[ 2] = htole32((buf)[ 2]); \ (buf)[ 3] = htole32((buf)[ 3]); \} while (0)#define htole32_14(buf) do { \ (buf)[ 0] = htole32((buf)[ 0]); \ (buf)[ 1] = htole32((buf)[ 1]); \ (buf)[ 2] = htole32((buf)[ 2]); \ (buf)[ 3] = htole32((buf)[ 3]); \ (buf)[ 4] = htole32((buf)[ 4]); \ (buf)[ 5] = htole32((buf)[ 5]); \ (buf)[ 6] = htole32((buf)[ 6]); \ (buf)[ 7] = htole32((buf)[ 7]); \ (buf)[ 8] = htole32((buf)[ 8]); \ (buf)[ 9] = htole32((buf)[ 9]); \ (buf)[10] = htole32((buf)[10]); \ (buf)[11] = htole32((buf)[11]); \ (buf)[12] = htole32((buf)[12]); \ (buf)[13] = htole32((buf)[13]); \} while (0)#define htole32_16(buf) do { \ (buf)[ 0] = htole32((buf)[ 0]); \ (buf)[ 1] = htole32((buf)[ 1]); \ (buf)[ 2] = htole32((buf)[ 2]); \ (buf)[ 3] = htole32((buf)[ 3]); \ (buf)[ 4] = htole32((buf)[ 4]); \ (buf)[ 5] = htole32((buf)[ 5]); \ (buf)[ 6] = htole32((buf)[ 6]); \ (buf)[ 7] = htole32((buf)[ 7]); \ (buf)[ 8] = htole32((buf)[ 8]); \ (buf)[ 9] = htole32((buf)[ 9]); \ (buf)[10] = htole32((buf)[10]); \ (buf)[11] = htole32((buf)[11]); \ (buf)[12] = htole32((buf)[12]); \ (buf)[13] = htole32((buf)[13]); \ (buf)[14] = htole32((buf)[14]); \ (buf)[15] = htole32((buf)[15]); \} while (0)#endif/* * Start MD4 accumulation. * Set bit count to 0 and buffer to mysterious initialization constants. */voidMD4Init(MD4_CTX *ctx){ ctx->count[0] = 0; ctx->count[1] = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xefcdab89; ctx->state[2] = 0x98badcfe; ctx->state[3] = 0x10325476;}/* * Update context to reflect the concatenation of another buffer full * of bytes. */voidMD4Update(MD4_CTX *ctx, const unsigned char *buf, size_t len){ uint32_t count; /* Bytes already stored in ctx->buffer */ count = (uint32_t)((ctx->count[0] >> 3) & 0x3f); /* Update bitcount *//* ctx->count += (uint64_t)len << 3;*/ if ((ctx->count[0] += ((uint32_t)len << 3)) < (uint32_t)len) { /* Overflowed ctx->count[0] */ ctx->count[1]++; } ctx->count[1] += ((uint32_t)len >> 29); /* Handle any leading odd-sized chunks */ if (count) { unsigned char *p = (unsigned char *)ctx->buffer + count; count = MD4_BLOCK_LENGTH - count; if (len < count) { memcpy(p, buf, len); return; } memcpy(p, buf, count); htole32_16((uint32_t *)ctx->buffer); MD4Transform(ctx->state, ctx->buffer); buf += count; len -= count; } /* Process data in MD4_BLOCK_LENGTH-byte chunks */ while (len >= MD4_BLOCK_LENGTH) { memcpy(ctx->buffer, buf, MD4_BLOCK_LENGTH); htole32_16((uint32_t *)ctx->buffer); MD4Transform(ctx->state, ctx->buffer); buf += MD4_BLOCK_LENGTH; len -= MD4_BLOCK_LENGTH; } /* Handle any remaining bytes of data. */ memcpy(ctx->buffer, buf, len);}/* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */voidMD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx){ uint32_t count; unsigned char *p; /* number of bytes mod 64 */ count = (uint32_t)(ctx->count[0] >> 3) & 0x3f; /* * Set the first char of padding to 0x80. * This is safe since there is always at least one byte free. */ p = ctx->buffer + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); htole32_16((uint32_t *)ctx->buffer); MD4Transform(ctx->state, ctx->buffer); /* Now fill the next block with 56 bytes */ memset(ctx->buffer, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count - 8); } htole32_14((uint32_t *)ctx->buffer); /* Append bit count and transform */ ((uint32_t *)ctx->buffer)[14] = ctx->count[0]; ((uint32_t *)ctx->buffer)[15] = ctx->count[1]; MD4Transform(ctx->state, ctx->buffer); htole32_4(ctx->state); memcpy(digest, ctx->state, MD4_DIGEST_LENGTH); memset(ctx, 0, sizeof(*ctx)); /* in case it's sensitive */}/* The three core functions - F1 is optimized somewhat *//* #define F1(x, y, z) (x & y | ~x & z) */#define F1(x, y, z) (z ^ (x & (y ^ z)))#define F2(x, y, z) ((x & y) | (x & z) | (y & z))#define F3(x, y, z) (x ^ y ^ z)/* This is the central step in the MD4 algorithm. */#define MD4STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<<s | w>>(32-s) )/* * The core of the MD4 algorithm, this alters an existing MD4 hash to * reflect the addition of 16 longwords of new data. MD4Update blocks * the data and converts bytes into longwords for this routine. */voidMD4Transform(uint32_t buf[4], const unsigned char inc[MD4_BLOCK_LENGTH]){ uint32_t a, b, c, d; const uint32_t *in = (const uint32_t *)inc; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD4STEP(F1, a, b, c, d, in[ 0], 3); MD4STEP(F1, d, a, b, c, in[ 1], 7); MD4STEP(F1, c, d, a, b, in[ 2], 11); MD4STEP(F1, b, c, d, a, in[ 3], 19); MD4STEP(F1, a, b, c, d, in[ 4], 3); MD4STEP(F1, d, a, b, c, in[ 5], 7); MD4STEP(F1, c, d, a, b, in[ 6], 11); MD4STEP(F1, b, c, d, a, in[ 7], 19); MD4STEP(F1, a, b, c, d, in[ 8], 3); MD4STEP(F1, d, a, b, c, in[ 9], 7); MD4STEP(F1, c, d, a, b, in[10], 11); MD4STEP(F1, b, c, d, a, in[11], 19); MD4STEP(F1, a, b, c, d, in[12], 3); MD4STEP(F1, d, a, b, c, in[13], 7); MD4STEP(F1, c, d, a, b, in[14], 11); MD4STEP(F1, b, c, d, a, in[15], 19); MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3); MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5); MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9); MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13); MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3); MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5); MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9); MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13); MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3); MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5); MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9); MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13); MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3); MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5); MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9); MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13); MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3); MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9); MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11); MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15); MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3); MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9); MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11); MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15); MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3); MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9); MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11); MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15); MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3); MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9); MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11); MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -