📄 rfc2716.txt
字号:
RFC 2716 PPP EAP TLS Authentication Protocol October 1999 The L bit (length included) is set to indicate the presence of the four octet TLS Message Length field, and MUST be set for the first fragment of a fragmented TLS message or set of messages. The M bit (more fragments) is set on all but the last fragment. The S bit (EAP-TLS start) is set in an EAP-TLS Start message. This differentiates the EAP-TLS Start message from a fragment acknowledgement. TLS Message Length The TLS Message Length field is four octets, and is present only if the L bit is set. This field provides the total length of the TLS message or set of messages that is being fragmented. TLS data The TLS data consists of the encapsulated TLS packet in TLS record format.4.3. PPP EAP TLS Response Packet A summary of the PPP EAP TLS Response packet format is shown below. The fields are transmitted from left to right. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Code | Identifier | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Flags | TLS Message Length +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLS Message Length | TLS Data... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Code 2 Identifier The Identifier field is one octet and MUST match the Identifier field from the corresponding request. Length The Length field is two octets and indicates the length of the EAP packet including the Code, Identifir, Length, Type, and TLS data fields.Aboba & Simon Experimental [Page 19]RFC 2716 PPP EAP TLS Authentication Protocol October 1999 Type 13 - EAP TLS Flags 0 1 2 3 4 5 6 7 8 +-+-+-+-+-+-+-+-+ |L M S R R R R R| +-+-+-+-+-+-+-+-+ L = Length included M = More fragments S = EAP-TLS start R = Reserved The L bit (length included) is set to indicate the presence of the four octet TLS Message Length field, and MUST be set for the first fragment of a fragmented TLS message or set of messages. The M bit (more fragments) is set on all but the last fragment. The S bit (EAP-TLS start) is set in an EAP-TLS Start message. This differentiates the EAP-TLS Start message from a fragment acknowledgement. TLS Message Length The TLS Message Length field is four octets, and is present only if the L bit is set. This field provides the total length of the TLS message or set of messages that is being fragmented. TLS data The TLS data consists of the encapsulated TLS packet in TLS record format.Aboba & Simon Experimental [Page 20]RFC 2716 PPP EAP TLS Authentication Protocol October 19995. References [1] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, July 1994. [2] Sklower, K., Lloyd, B., McGregor, G., Carr, D. and T. Coradetti, "The PPP Multilink Protocol (MP)", RFC 1990, August 1996. [3] Simpson, W., Editor, "PPP LCP Extensions", RFC 1570, January 1994. [4] Rivest, R. and S. Dusse, "The MD5 Message-Digest Algorithm", RFC 1321, April 1992. [5] Blunk, L. and J. Vollbrecht, "PPP Extensible Authentication Protocol (EAP)", RFC 2284, March 1998. [6] Meyer, G., "The PPP Encryption Protocol (ECP)", RFC 1968, June 1996. [7] National Bureau of Standards, "Data Encryption Standard", FIPS PUB 46 (January 1977). [8] National Bureau of Standards, "DES Modes of Operation", FIPS PUB 81 (December 1980). [9] Sklower, K. amd G. Meyer, "The PPP DES Encryption Protocol, Version 2 (DESE-bis)", RFC 2419, September 1998. [10] Hummert, K., "The PPP Triple-DES Encryption Protocol (3DESE)", RFC 2420, September 1998. [11] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [12] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 2246, November 1998. [13] Rand, D., "The PPP Compression Control Protocol", RFC 1962, June 1996.Aboba & Simon Experimental [Page 21]RFC 2716 PPP EAP TLS Authentication Protocol October 19996. Security Considerations6.1. Certificate revocation Since the EAP server is on the Internet during the EAP conversation, the server is capable of following a certificate chain or verifying whether the peer's certificate has been revoked. In contrast, the peer may or may not have Internet connectivity, and thus while it can validate the EAP server's certificate based on a pre-configured set of CAs, it may not be able to follow a certificate chain or verify whether the EAP server's certificate has been revoked. In the case where the peer is initiating a voluntary Layer 2 tunnel using PPTP or L2TP, the peer will typically already have a PPP interface and Internet connectivity established at the time of tunnel initiation. As a result, during the EAP conversation it is capable of checking for certificate revocation. However, in the case where the peer is initiating an intial PPP conversation, it will not have Internet connectivity and is therefore not capable of checking for certificate revocation until after NCP negotiation completes and the peer has access to the Internet. In this case, the peer SHOULD check for certificate revocation after connecting to the Internet.6.2. Separation of the EAP server and PPP authenticator As a result of the EAP-TLS conversation, the EAP endpoints will mutually authenticate, negotiate a ciphersuite, and derive a session key for subsequent use in PPP encryption. Since the peer and EAP client reside on the same machine, it is necessary for the EAP client module to pass the session key to the PPP encryption module. The situation may be more complex on the PPP authenticator, which may or may not reside on the same machine as the EAP server. In the case where the EAP server and PPP authenticator reside on different machines, there are several implications for security. Firstly, the mutual authentication defined in EAP-TLS will occur between the peer and the EAP server, not between the peer and the authenticator. This means that as a result of the EAP-TLS conversation, it is not possible for the peer to validate the identity of the NAS or tunnel server that it is speaking to. The second issue is that the session key negotiated between the peer and EAP server will need to be transmitted to the authenticator. Therefore a mechanism needs to be provided to transmit the session key from the EAP server to the authenticator or tunnel server that needs to use the key. The specification of this transit mechanism isAboba & Simon Experimental [Page 22]RFC 2716 PPP EAP TLS Authentication Protocol October 1999 outside the scope of this document.6.3. Relationship of PPP encryption to other security mechanisms It is envisaged that EAP-TLS will be used primarily with dialup PPP connections. However, there are also circumstances in which PPP encryption may be used along with Layer 2 tunneling protocols such as PPTP and L2TP. In compulsory layer 2 tunneling, a PPP peer makes a connection to a NAS or router which tunnels the PPP packets to a tunnel server. Since with compulsory tunneling a PPP peer cannot tell whether its packets are being tunneled, let alone whether the network device is securing the tunnel, if security is required then the client must make its own arrangements. In the case where all endpoints cannot be relied upon to implement IPSEC, TLS, or another suitable security protocol, PPP encryption provides a convenient means to ensure the privacy of packets transiting between the client and the tunnel server.7. Acknowledgments Thanks to Terence Spies, Glen Zorn and Narendra Gidwani of Microsoft for useful discussions of this problem space.8. Authors' Addresses Bernard Aboba Microsoft Corporation One Microsoft Way Redmond, WA 98052 Phone: 425-936-6605 EMail: bernarda@microsoft.com Dan Simon Microsoft Corporation One Microsoft Way Redmond, WA 98052 Phone: 425-936-6711 EMail: dansimon@microsoft.comAboba & Simon Experimental [Page 23]RFC 2716 PPP EAP TLS Authentication Protocol October 19999. Full Copyright Statement Copyright (C) The Internet Society (1999). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Aboba & Simon Experimental [Page 24]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -