📄 jv.cpp
字号:
//// jv.cpp//// jv.cpp,v 1.10 2003/12/12 09:54:54 tonyottosson Exp// #include <cmath>#include "base/itassert.h"#include "base/scalfunc.h"#include "../src/base/bessel/bessel_internal.h"using namespace itpp;// This is slightly modified routine from the Cephes library, see http://www.netlib.org/cephes/// // According to licence agreement this software can be used freely.///* * Bessel function of noninteger order * * double v, x, y, jv(); * * y = jv( v, x ); * * DESCRIPTION: * * Returns Bessel function of order v of the argument, * where v is real. Negative x is allowed if v is an integer. * * Several expansions are included: the ascending power * series, the Hankel expansion, and two transitional * expansions for large v. If v is not too large, it * is reduced by recurrence to a region of best accuracy. * The transitional expansions give 12D accuracy for v > 500. * * ACCURACY: * Results for integer v are indicated by *, where x and v * both vary from -125 to +125. Otherwise, * x ranges from 0 to 125, v ranges as indicated by "domain." * Error criterion is absolute, except relative when |jv()| > 1. * * arithmetic v domain x domain # trials peak rms * IEEE 0,125 0,125 100000 4.6e-15 2.2e-16 * IEEE -125,0 0,125 40000 5.4e-11 3.7e-13 * IEEE 0,500 0,500 20000 4.4e-15 4.0e-16 * Integer v: * IEEE -125,125 -125,125 50000 3.5e-15* 1.9e-16* *//*Cephes Math Library Release 2.8: June, 2000Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier*/#define MAXGAM 171.624376956302725static double recur(double *, double, double *, int);static double jvs(double, double);static double hankel(double, double);static double jnx(double, double);static double jnt(double, double);#define MAXNUM 1.79769313486231570815E308 /* 2**1024*(1-MACHEP) */#define MACHEP 1.11022302462515654042E-16 /* 2**-53 */#define MAXLOG 7.08396418532264106224E2 /* log 2**1022 */#define MINLOG -7.08396418532264106224E2 /* log 2**-1022 */#define PI 3.14159265358979323846 /* pi */#define BIG 1.44115188075855872E+17// ---------------------------- jv() -------------------------------------------------------double jv(double n, double x){ double k, q, t, y, an; int i, sign, nint; nint = 0; /* Flag for integer n */ sign = 1; /* Flag for sign inversion */ an = fabs( n ); y = floor( an ); if( y == an ) { nint = 1; i = int(an - 16384.0 * floor( an/16384.0 )); if( n < 0.0 ) { if( i & 1 ) sign = -sign; n = an; } if( x < 0.0 ) { if( i & 1 ) sign = -sign; x = -x; } if( n == 0.0 ) // use 0th order bessel function return( j0(x) ); if( n == 1.0 ) // use 1th order bessel function return( sign * j1(x) ); } it_error_if( (x < 0.0) && (y != an), "besselj:: negative values only allowed for integer orders."); y = fabs(x); if( y < MACHEP ) goto underf; k = 3.6 * sqrt(y); t = 3.6 * sqrt(an); if( (y < t) && (an > 21.0) ) return( sign * jvs(n,x) ); if( (an < k) && (y > 21.0) ) return( sign * hankel(n,x) ); if( an < 500.0 ) { /* Note: if x is too large, the continued * fraction will fail; but then the * Hankel expansion can be used. */ if( nint != 0 ) { k = 0.0; q = recur( &n, x, &k, 1 ); if( k == 0.0 ) { y = j0(x)/q; goto done; } if( k == 1.0 ) { y = j1(x)/q; goto done; } } if( an > 2.0 * y ) goto rlarger; if( (n >= 0.0) && (n < 20.0) && (y > 6.0) && (y < 20.0) ) { /* Recur backwards from a larger value of n */ rlarger: k = n; y = y + an + 1.0; if( y < 30.0 ) y = 30.0; y = n + floor(y-n); q = recur( &y, x, &k, 0 ); y = jvs(y,x) * q; goto done; } if( k <= 30.0 ) { k = 2.0; } else if( k < 90.0 ) { k = (3*k)/4; } if( an > (k + 3.0) ) { if( n < 0.0 ) k = -k; q = n - floor(n); k = floor(k) + q; if( n > 0.0 ) q = recur( &n, x, &k, 1 ); else { t = k; k = n; q = recur( &t, x, &k, 1 ); k = t; } if( q == 0.0 ) { underf: y = 0.0; goto done; } } else { k = n; q = 1.0; } /* boundary between convergence of * power series and Hankel expansion */ y = fabs(k); if( y < 26.0 ) t = (0.0083*y + 0.09)*y + 12.9; else t = 0.9 * y; if( x > t ) y = hankel(k,x); else y = jvs(k,x); if( n > 0.0 ) y /= q; else y *= q; } else { /* For large n, use the uniform expansion * or the transitional expansion. * But if x is of the order of n**2, * these may blow up, whereas the * Hankel expansion will then work. */ if( n < 0.0 ) { it_warning("besselj:: partial loss of precision"); y = 0.0; goto done; } t = x/n; t /= n; if( t > 0.3 ) y = hankel(n,x); else y = jnx(n,x); } done: return( sign * y);}/* Reduce the order by backward recurrence. * AMS55 #9.1.27 and 9.1.73. */static double recur(double *n, double x, double *newn, int cancel){ double pkm2, pkm1, pk, qkm2, qkm1; /* double pkp1; */ double k, ans, qk, xk, yk, r, t, kf; static double big = BIG; int nflag, ctr; /* continued fraction for Jn(x)/Jn-1(x) */ if( *n < 0.0 ) nflag = 1; else nflag = 0; fstart: pkm2 = 0.0; qkm2 = 1.0; pkm1 = x; qkm1 = *n + *n; xk = -x * x; yk = qkm1; ans = 1.0; ctr = 0; do { yk += 2.0; pk = pkm1 * yk + pkm2 * xk; qk = qkm1 * yk + qkm2 * xk; pkm2 = pkm1; pkm1 = pk; qkm2 = qkm1; qkm1 = qk; if( qk != 0 ) r = pk/qk; else r = 0.0; if( r != 0 ) { t = fabs( (ans - r)/r ); ans = r; } else t = 1.0; if( ++ctr > 1000 ) { it_warning("besselj:: Underflow"); //mtherr( "jv", UNDERFLOW ); goto done; } if( t < MACHEP ) goto done; if( fabs(pk) > big ) { pkm2 /= big; pkm1 /= big; qkm2 /= big; qkm1 /= big; } } while( t > MACHEP ); done: /* Change n to n-1 if n < 0 and the continued fraction is small */ if( nflag > 0 ) { if( fabs(ans) < 0.125 ) { nflag = -1; *n = *n - 1.0; goto fstart; } } kf = *newn; /* backward recurrence * 2k * J (x) = --- J (x) - J (x) * k-1 x k k+1 */ pk = 1.0; pkm1 = 1.0/ans; k = *n - 1.0; r = 2 * k; do { pkm2 = (pkm1 * r - pk * x) / x; /* pkp1 = pk; */ pk = pkm1; pkm1 = pkm2; r -= 2.0; /* t = fabs(pkp1) + fabs(pk); if( (k > (kf + 2.5)) && (fabs(pkm1) < 0.25*t) ) { k -= 1.0; t = x*x; pkm2 = ( (r*(r+2.0)-t)*pk - r*x*pkp1 )/t; pkp1 = pk; pk = pkm1; pkm1 = pkm2; r -= 2.0; } */ k -= 1.0; } while( k > (kf + 0.5) ); /* Take the larger of the last two iterates * on the theory that it may have less cancellation error. */ if( cancel ) { if( (kf >= 0.0) && (fabs(pk) > fabs(pkm1)) ) { k += 1.0; pkm2 = pk; } } *newn = k; return( pkm2 );}/* Ascending power series for Jv(x). * AMS55 #9.1.10. */static double jvs(double n, double x){ double t, u, y, z, k; int ex; z = -x * x / 4.0; u = 1.0; y = u; k = 1.0; t = 1.0; while( t > MACHEP ) { u *= z / (k * (n+k)); y += u; k += 1.0; if( y != 0 ) t = fabs( u/y ); } t = frexp( 0.5*x, &ex ); ex = int(ex * n); if( (ex > -1023) && (ex < 1023) && (n > 0.0) && (n < (MAXGAM-1.0)) ) { t = pow( 0.5*x, n ) / itpp::gamma( n + 1.0 ); y *= t; } else { t = n * log(0.5*x) - lgamma(n + 1.0); if( y < 0 ) {#ifdef _MSC_VER it_error("lgamma only defined for positive values for Visual C++");#else signgam = -signgam; y = -y;#endif } t += log(y); if( t < -MAXLOG ) { return( 0.0 ); } if( t > MAXLOG ) { it_warning("besselj:: Overflow"); //mtherr( "Jv", OVERFLOW ); return( MAXNUM ); }#ifdef _MSC_VER y = exp( t );#else y = signgam * exp( t );#endif } return(y);}/* Hankel's asymptotic expansion * for large x. * AMS55 #9.2.5. */static double hankel(double n, double x){ double t, u, z, k, sign, conv; double p, q, j, m, pp, qq; int flag; m = 4.0*n*n; j = 1.0; z = 8.0 * x; k = 1.0; p = 1.0; u = (m - 1.0)/z; q = u; sign = 1.0; conv = 1.0; flag = 0; t = 1.0; pp = 1.0e38; qq = 1.0e38; while( t > MACHEP ) { k += 2.0; j += 1.0; sign = -sign; u *= (m - k * k)/(j * z); p += sign * u; k += 2.0; j += 1.0; u *= (m - k * k)/(j * z); q += sign * u; t = fabs(u/p); if( t < conv ) { conv = t; qq = q; pp = p; flag = 1; } /* stop if the terms start getting larger */ if( (flag != 0) && (t > conv) ) { goto hank1; } } hank1: u = x - (0.5*n + 0.25) * PI; t = sqrt( 2.0/(PI*x) ) * ( pp * cos(u) - qq * sin(u) ); return( t );}/* Asymptotic expansion for large n. * AMS55 #9.3.35. */static double lambda[] = { 1.0, 1.041666666666666666666667E-1, 8.355034722222222222222222E-2, 1.282265745563271604938272E-1, 2.918490264641404642489712E-1, 8.816272674437576524187671E-1, 3.321408281862767544702647E+0, 1.499576298686255465867237E+1, 7.892301301158651813848139E+1, 4.744515388682643231611949E+2, 3.207490090890661934704328E+3};static double mu[] = { 1.0, -1.458333333333333333333333E-1, -9.874131944444444444444444E-2, -1.433120539158950617283951E-1, -3.172272026784135480967078E-1, -9.424291479571202491373028E-1, -3.511203040826354261542798E+0, -1.572726362036804512982712E+1, -8.228143909718594444224656E+1, -4.923553705236705240352022E+2, -3.316218568547972508762102E+3};static double P1[] = { -2.083333333333333333333333E-1, 1.250000000000000000000000E-1};static double P2[] = { 3.342013888888888888888889E-1, -4.010416666666666666666667E-1, 7.031250000000000000000000E-2};static double P3[] = { -1.025812596450617283950617E+0, 1.846462673611111111111111E+0, -8.912109375000000000000000E-1, 7.324218750000000000000000E-2};static double P4[] = { 4.669584423426247427983539E+0, -1.120700261622299382716049E+1, 8.789123535156250000000000E+0, -2.364086914062500000000000E+0, 1.121520996093750000000000E-1};static double P5[] = { -2.8212072558200244877E1, 8.4636217674600734632E1, -9.1818241543240017361E1, 4.2534998745388454861E1, -7.3687943594796316964E0, 2.27108001708984375E-1};static double P6[] = { 2.1257013003921712286E2, -7.6525246814118164230E2, 1.0599904525279998779E3, -6.9957962737613254123E2, 2.1819051174421159048E2, -2.6491430486951555525E1, 5.7250142097473144531E-1};static double P7[] = { -1.9194576623184069963E3, 8.0617221817373093845E3, -1.3586550006434137439E4, 1.1655393336864533248E4, -5.3056469786134031084E3, 1.2009029132163524628E3, -1.0809091978839465550E2, 1.7277275025844573975E0};static double jnx(double n, double x){ double zeta, sqz, zz, zp, np; double cbn, n23, t, z, sz; double pp, qq, z32i, zzi; double ak, bk, akl, bkl; int sign, doa, dob, nflg, k, s, tk, tkp1, m; static double u[8]; static double ai, aip, bi, bip; /* Test for x very close to n. * Use expansion for transition region if so. */ cbn = cbrt(n); z = (x - n)/cbn; if( fabs(z) <= 0.7 ) return( jnt(n,x) ); z = x/n; zz = 1.0 - z*z; if( zz == 0.0 ) return(0.0); if( zz > 0.0 ) { sz = sqrt( zz ); t = 1.5 * (log( (1.0+sz)/z ) - sz ); /* zeta ** 3/2 */ zeta = cbrt( t * t ); nflg = 1; } else { sz = sqrt(-zz); t = 1.5 * (sz - acos(1.0/z)); zeta = -cbrt( t * t ); nflg = -1; } z32i = fabs(1.0/t); sqz = cbrt(t); /* Airy function */ n23 = cbrt( n * n ); t = n23 * zeta; airy( t, &ai, &aip, &bi, &bip ); /* polynomials in expansion */ u[0] = 1.0; zzi = 1.0/zz; u[1] = polevl( zzi, P1, 1 )/sz; u[2] = polevl( zzi, P2, 2 )/zz; u[3] = polevl( zzi, P3, 3 )/(sz*zz); pp = zz*zz; u[4] = polevl( zzi, P4, 4 )/pp; u[5] = polevl( zzi, P5, 5 )/(pp*sz); pp *= zz; u[6] = polevl( zzi, P6, 6 )/pp; u[7] = polevl( zzi, P7, 7 )/(pp*sz); pp = 0.0; qq = 0.0; np = 1.0; /* flags to stop when terms get larger */ doa = 1; dob = 1; akl = MAXNUM; bkl = MAXNUM; for( k=0; k<=3; k++ ) { tk = 2 * k; tkp1 = tk + 1; zp = 1.0; ak = 0.0; bk = 0.0; for( s=0; s<=tk; s++ ) { if( doa ) { if( (s & 3) > 1 ) sign = nflg; else sign = 1; ak += sign * mu[s] * zp * u[tk-s]; } if( dob ) { m = tkp1 - s; if( ((m+1) & 3) > 1 ) sign = nflg; else sign = 1; bk += sign * lambda[s] * zp * u[m]; } zp *= z32i; } if( doa ) { ak *= np; t = fabs(ak); if( t < akl ) { akl = t; pp += ak; } else doa = 0; } if( dob ) { bk += lambda[tkp1] * zp * u[0]; bk *= -np/sqz; t = fabs(bk); if( t < bkl ) { bkl = t; qq += bk; } else dob = 0; } if( np < MACHEP ) break; np /= n*n; } /* normalizing factor ( 4*zeta/(1 - z**2) )**1/4 */ t = 4.0 * zeta/zz; t = sqrt( sqrt(t) ); t *= ai*pp/cbrt(n) + aip*qq/(n23*n); return(t);}/* Asymptotic expansion for transition region, * n large and x close to n. * AMS55 #9.3.23. */static double PF2[] = { -9.0000000000000000000e-2, 8.5714285714285714286e-2};static double PF3[] = { 1.3671428571428571429e-1, -5.4920634920634920635e-2, -4.4444444444444444444e-3};static double PF4[] = { 1.3500000000000000000e-3, -1.6036054421768707483e-1, 4.2590187590187590188e-2, 2.7330447330447330447e-3};static double PG1[] = { -2.4285714285714285714e-1, 1.4285714285714285714e-2};static double PG2[] = { -9.0000000000000000000e-3, 1.9396825396825396825e-1, -1.1746031746031746032e-2};static double PG3[] = { 1.9607142857142857143e-2, -1.5983694083694083694e-1, 6.3838383838383838384e-3};static double jnt(double n, double x){ double z, zz, z3; double cbn, n23, cbtwo; double ai, aip, bi, bip; /* Airy functions */ double nk, fk, gk, pp, qq; double F[5], G[4]; int k; cbn = cbrt(n); z = (x - n)/cbn; cbtwo = cbrt( 2.0 ); /* Airy function */ zz = -cbtwo * z; airy( zz, &ai, &aip, &bi, &bip ); /* polynomials in expansion */ zz = z * z; z3 = zz * z; F[0] = 1.0; F[1] = -z/5.0; F[2] = polevl( z3, PF2, 1 ) * zz; F[3] = polevl( z3, PF3, 2 ); F[4] = polevl( z3, PF4, 3 ) * z; G[0] = 0.3 * zz; G[1] = polevl( z3, PG1, 1 ); G[2] = polevl( z3, PG2, 2 ) * z; G[3] = polevl( z3, PG3, 2 ) * zz; pp = 0.0; qq = 0.0; nk = 1.0; n23 = cbrt( n * n ); for( k=0; k<=4; k++ ) { fk = F[k]*nk; pp += fk; if( k != 4 ) { gk = G[k]*nk; qq += gk; } nk /= n23; } fk = cbtwo * ai * pp/cbn + cbrt(4.0) * aip * qq/n; return(fk);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -