⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 generateprimes.java

📁 著名的uncle Bob的Agile software development的代码
💻 JAVA
字号:
/** * This class Generates prime numbers up to a user specified maximum. * the algorithm used is the Sieve of Eratosthenes. * <p> * Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya -- * d. c. 194, Alexandria.  The first man to calculate the circumference * of the Earth.  Also known for working on calendars with leap * years and ran the library at Alexandria. * <p> * The algorithm is quite simple.  Given an array of integers starting * at 2.  Cross out all multiples of 2.  Find the next uncrossed * integer, and cross out all of its multiples.  Repeat until * you have passed the square root of the maximum value. *  * @author Robert C. Martin * @version 9 Dec 1999 rcm */import java.util.*;/** * Class declaration *  *  * @author Robert C. Martin * @version %I%, %G% */public class GeneratePrimes{  /**   * @param maxValue is the generation limit.   */  public static int[] generatePrimes(int maxValue)  {    if (maxValue >= 2) // the only valid case    {      // declarations      int s = maxValue + 1; // size of array      boolean[] f = new boolean[s];      int i;      // initialize array to true.      for (i = 0; i < s; i++)        f[i] = true;      // get rid of known non-primes      f[0] = f[1] = false;      // sieve      int j;      for (i = 2; i < Math.sqrt(s) + 1; i++)      {        for (j = 2 * i; j < s; j += i)          f[j] = false; // multiple is not prime      }      // how many primes are there?      int count = 0;      for (i = 0; i < s; i++)      {        if (f[i])          count++; // bump count.      }      int[] primes = new int[count];      // move the primes into the result      for (i = 0, j = 0; i < s; i++)      {        if (f[i])             // if prime          primes[j++] = i;      }	        return primes;  // return the primes    }    else // maxValue < 2      return new int[0]; // return null array if bad input.  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -