📄 discretizefilter.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * DiscretizeFilter.java * Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.filters;import java.io.*;import java.util.*;import weka.core.*;/** * An instance filter that discretizes a range of numeric attributes in * the dataset into nominal attributes. Discretization can be either by * simple binning, or by Fayyad & Irani's MDL method (the default).<p> * * Valid filter-specific options are: <p> * * -B num <br> * Specify the (maximum) number of bins to divide numeric attributes into. * (default class-based discretisation).<p> * * -O <br> * Optimizes the number of bins using a leave-one-out estimate of the * entropy.<p> * * -R col1,col2-col4,... <br> * Specify list of columns to Discretize. First * and last are valid indexes. (default none) <p> * * -V <br> * Invert matching sense.<p> * * -D <br> * Make binary nominal attributes. <p> * * -E <br> * Use better encoding of split point for MDL. <p> * * -K <br> * Use Kononeko's MDL criterion. <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) (Fayyad and Irani's method) * @version $Revision: 1.15 $ */public class DiscretizeFilter extends Filter implements OptionHandler, WeightedInstancesHandler { /** Stores which columns to Discretize */ protected Range m_DiscretizeCols = new Range(); /** The number of bins to divide the attribute into */ protected int m_NumBins = 10; /** Store the current cutpoints */ protected double [][] m_CutPoints = null; /** True if discretisation will be done by MDL rather than binning */ protected boolean m_UseMDL = true; /** Output binary attributes for discretized attributes. */ protected boolean m_MakeBinary = false; /** Use better encoding of split point for MDL. */ protected boolean m_UseBetterEncoding = false; /** Use Kononenko's MDL criterion instead of Fayyad et al.'s */ protected boolean m_UseKononenko = false; /** Find the number of bins using cross-validated entropy. */ protected boolean m_FindNumBins = false; /** Constructor - initialises the filter */ public DiscretizeFilter() { setAttributeIndices("first-last"); } /** * Gets an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector.addElement(new Option( "\tSpecify the (maximum) number of bins to divide numeric" + " attributes into.\n" + "\t(default class-based discretization)", "B", 1, "-B <num>")); newVector.addElement(new Option( "\tOptimize number of bins using leave-one-out estimate\n"+ "\t of estimated entropy.", "O", 0, "-O")); /* If we decide to implement loading and saving cutfiles like * the C Discretizer (which is probably not necessary) newVector.addElement(new Option( "\tSpecify that the cutpoints should be loaded from a file.", "L", 1, "-L <file>")); newVector.addElement(new Option( "\tSpecify that the chosen cutpoints should be saved to a file.", "S", 1, "-S <file>")); */ newVector.addElement(new Option( "\tSpecify list of columns to Discretize. First" + " and last are valid indexes.\n" + "\t(default none)", "R", 1, "-R <col1,col2-col4,...>")); newVector.addElement(new Option( "\tInvert matching sense of column indexes.", "V", 0, "-V")); newVector.addElement(new Option( "\tOutput binary attributes for discretized attributes.", "D", 0, "-D")); newVector.addElement(new Option( "\tUse better encoding of split point for MDL.", "E", 0, "-E")); newVector.addElement(new Option( "\tUse Kononenko's MDL criterion.", "K", 0, "-K")); return newVector.elements(); } /** * Parses the options for this object. Valid options are: <p> * * -B num <br> * Specify the (maximum) number of equal-width bins to divide * numeric attributes into. (default class-based discretization).<p> * * -O * Optimizes the number of bins using a leave-one-out estimate of the * entropy. * * -R col1,col2-col4,... <br> * Specify list of columns to discretize. First * and last are valid indexes. (default none) <p> * * -V <br> * Invert matching sense.<p> * * -D <br> * Make binary nominal attributes. <p> * * -E <br> * Use better encoding of split point for MDL. <p> * * -K <br> * Use Kononeko's MDL criterion. <p> * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setMakeBinary(Utils.getFlag('D', options)); setUseBetterEncoding(Utils.getFlag('E', options)); setUseKononenko(Utils.getFlag('K', options)); setFindNumBins(Utils.getFlag('O', options)); setInvertSelection(Utils.getFlag('V', options)); setUseMDL(true); String numBins = Utils.getOption('B', options); if (numBins.length() != 0) { setBins(Integer.parseInt(numBins)); setUseMDL(false); } else { setBins(10); } String convertList = Utils.getOption('R', options); if (convertList.length() != 0) { setAttributeIndices(convertList); } else { setAttributeIndices("first-last"); } if (getInputFormat() != null) { setInputFormat(getInputFormat()); } } /** * Gets the current settings of the filter. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [11]; int current = 0; if (getMakeBinary()) { options[current++] = "-D"; } if (getUseBetterEncoding()) { options[current++] = "-E"; } if (getUseKononenko()) { options[current++] = "-K"; } if (getFindNumBins()) { options[current++] = "-O"; } if (getInvertSelection()) { options[current++] = "-V"; } if (!getUseMDL()) { options[current++] = "-B"; options[current++] = "" + getBins(); } if (!getAttributeIndices().equals("")) { options[current++] = "-R"; options[current++] = getAttributeIndices(); } while (current < options.length) { options[current++] = ""; } return options; } /** * Sets the format of the input instances. * * @param instanceInfo an Instances object containing the input instance * structure (any instances contained in the object are ignored - only the * structure is required). * @return true if the outputFormat may be collected immediately * @exception Exception if the input format can't be set successfully */ public boolean setInputFormat(Instances instanceInfo) throws Exception { super.setInputFormat(instanceInfo); m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1); m_CutPoints = null; if (m_UseMDL) { if (instanceInfo.classIndex() < 0) { throw new UnassignedClassException("Cannot use class-based discretization: " + "no class assigned to the dataset"); } if (!instanceInfo.classAttribute().isNominal()) { throw new UnsupportedClassTypeException("Supervised discretization not possible:" + " class is not nominal!"); } } // If we implement loading cutfiles, then load //them here and set the output format return false; } /** * Input an instance for filtering. Ordinarily the instance is processed * and made available for output immediately. Some filters require all * instances be read before producing output. * * @param instance the input instance * @return true if the filtered instance may now be * collected with output(). * @exception IllegalStateException if no input format has been defined. */ public boolean input(Instance instance) { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (m_NewBatch) { resetQueue(); m_NewBatch = false; } if (m_CutPoints != null) { convertInstance(instance); return true; } bufferInput(instance); return false; } /** * Signifies that this batch of input to the filter is finished. If the * filter requires all instances prior to filtering, output() may now * be called to retrieve the filtered instances. * * @return true if there are instances pending output * @exception IllegalStateException if no input structure has been defined */ public boolean batchFinished() { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (m_CutPoints == null) { calculateCutPoints(); setOutputFormat(); // If we implement saving cutfiles, save the cuts here // Convert pending input instances for(int i = 0; i < getInputFormat().numInstances(); i++) { convertInstance(getInputFormat().instance(i)); } } flushInput(); m_NewBatch = true; return (numPendingOutput() != 0); } /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "An instance filter that discretizes a range of numeric" + " attributes in the dataset into nominal attributes." + " Discretization can be either by simple binning, or by" + " Fayyad & Irani's MDL method (the default)."; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String findNumBinsTipText() { return "Optimize bins using leave-one-out."; } /** * Get the value of FindNumBins. * * @return Value of FindNumBins. */ public boolean getFindNumBins() { return m_FindNumBins; } /** * Set the value of FindNumBins. * * @param newFindNumBins Value to assign to FindNumBins. */ public void setFindNumBins(boolean newFindNumBins) { m_UseMDL = false; m_FindNumBins = newFindNumBins; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String makeBinaryTipText() {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -