⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 discretizefilter.java

📁 :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    DiscretizeFilter.java *    Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.filters;import java.io.*;import java.util.*;import weka.core.*;/**  * An instance filter that discretizes a range of numeric attributes in  * the dataset into nominal attributes. Discretization can be either by  * simple binning, or by Fayyad & Irani's MDL method (the default).<p> * * Valid filter-specific options are: <p> * * -B num <br> * Specify the (maximum) number of bins to divide numeric attributes into. * (default class-based discretisation).<p> * * -O <br> * Optimizes the number of bins using a leave-one-out estimate of the  * entropy.<p> * * -R col1,col2-col4,... <br> * Specify list of columns to Discretize. First * and last are valid indexes. (default none) <p> * * -V <br> * Invert matching sense.<p> * * -D <br> * Make binary nominal attributes. <p> * * -E <br> * Use better encoding of split point for MDL. <p> *    * -K <br> * Use Kononeko's MDL criterion. <p> *  * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) (Fayyad and Irani's method) * @version $Revision: 1.15 $ */public class DiscretizeFilter extends Filter   implements OptionHandler, WeightedInstancesHandler {  /** Stores which columns to Discretize */  protected Range m_DiscretizeCols = new Range();  /** The number of bins to divide the attribute into */  protected int m_NumBins = 10;  /** Store the current cutpoints */  protected double [][] m_CutPoints = null;  /** True if discretisation will be done by MDL rather than binning */  protected boolean m_UseMDL = true;  /** Output binary attributes for discretized attributes. */  protected boolean m_MakeBinary = false;  /** Use better encoding of split point for MDL. */  protected boolean m_UseBetterEncoding = false;  /** Use Kononenko's MDL criterion instead of Fayyad et al.'s */  protected boolean m_UseKononenko = false;  /** Find the number of bins using cross-validated entropy. */  protected boolean m_FindNumBins = false;  /** Constructor - initialises the filter */  public DiscretizeFilter() {    setAttributeIndices("first-last");  }  /**   * Gets an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector newVector = new Vector(7);    newVector.addElement(new Option(              "\tSpecify the (maximum) number of bins to divide numeric"	      + " attributes into.\n"	      + "\t(default class-based discretization)",              "B", 1, "-B <num>"));    newVector.addElement(new Option(              "\tOptimize number of bins using leave-one-out estimate\n"+	      "\t of estimated entropy.",              "O", 0, "-O"));    /* If we decide to implement loading and saving cutfiles like      * the C Discretizer (which is probably not necessary)    newVector.addElement(new Option(              "\tSpecify that the cutpoints should be loaded from a file.",              "L", 1, "-L <file>"));    newVector.addElement(new Option(              "\tSpecify that the chosen cutpoints should be saved to a file.",              "S", 1, "-S <file>"));    */    newVector.addElement(new Option(              "\tSpecify list of columns to Discretize. First"	      + " and last are valid indexes.\n"	      + "\t(default none)",              "R", 1, "-R <col1,col2-col4,...>"));    newVector.addElement(new Option(              "\tInvert matching sense of column indexes.",              "V", 0, "-V"));    newVector.addElement(new Option(              "\tOutput binary attributes for discretized attributes.",              "D", 0, "-D"));    newVector.addElement(new Option(              "\tUse better encoding of split point for MDL.",              "E", 0, "-E"));    newVector.addElement(new Option(              "\tUse Kononenko's MDL criterion.",              "K", 0, "-K"));    return newVector.elements();  }  /**   * Parses the options for this object. Valid options are: <p>   *   * -B num <br>   * Specify the (maximum) number of equal-width bins to divide   * numeric attributes into. (default class-based discretization).<p>   *   * -O   * Optimizes the number of bins using a leave-one-out estimate of the    * entropy.   *   * -R col1,col2-col4,... <br>   * Specify list of columns to discretize. First   * and last are valid indexes. (default none) <p>   *   * -V <br>   * Invert matching sense.<p>   *   * -D <br>   * Make binary nominal attributes. <p>   *   * -E <br>   * Use better encoding of split point for MDL. <p>   *      * -K <br>   * Use Kononeko's MDL criterion. <p>   *    * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    setMakeBinary(Utils.getFlag('D', options));    setUseBetterEncoding(Utils.getFlag('E', options));    setUseKononenko(Utils.getFlag('K', options));    setFindNumBins(Utils.getFlag('O', options));    setInvertSelection(Utils.getFlag('V', options));    setUseMDL(true);    String numBins = Utils.getOption('B', options);    if (numBins.length() != 0) {      setBins(Integer.parseInt(numBins));      setUseMDL(false);    } else {      setBins(10);    }        String convertList = Utils.getOption('R', options);    if (convertList.length() != 0) {      setAttributeIndices(convertList);    } else {      setAttributeIndices("first-last");    }    if (getInputFormat() != null) {      setInputFormat(getInputFormat());    }  }  /**   * Gets the current settings of the filter.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [11];    int current = 0;    if (getMakeBinary()) {      options[current++] = "-D";    }    if (getUseBetterEncoding()) {      options[current++] = "-E";    }    if (getUseKononenko()) {      options[current++] = "-K";    }    if (getFindNumBins()) {      options[current++] = "-O";    }    if (getInvertSelection()) {      options[current++] = "-V";    }    if (!getUseMDL()) {      options[current++] = "-B"; options[current++] = "" + getBins();    }    if (!getAttributeIndices().equals("")) {      options[current++] = "-R"; options[current++] = getAttributeIndices();    }    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Sets the format of the input instances.   *   * @param instanceInfo an Instances object containing the input instance   * structure (any instances contained in the object are ignored - only the   * structure is required).   * @return true if the outputFormat may be collected immediately   * @exception Exception if the input format can't be set successfully   */  public boolean setInputFormat(Instances instanceInfo) throws Exception {    super.setInputFormat(instanceInfo);    m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1);    m_CutPoints = null;    if (m_UseMDL) {      if (instanceInfo.classIndex() < 0) {	throw new UnassignedClassException("Cannot use class-based discretization: "                                           + "no class assigned to the dataset");      }      if (!instanceInfo.classAttribute().isNominal()) {	throw new UnsupportedClassTypeException("Supervised discretization not possible:"                                                + " class is not nominal!");      }    }    // If we implement loading cutfiles, then load     //them here and set the output format    return false;  }    /**   * Input an instance for filtering. Ordinarily the instance is processed   * and made available for output immediately. Some filters require all   * instances be read before producing output.   *   * @param instance the input instance   * @return true if the filtered instance may now be   * collected with output().   * @exception IllegalStateException if no input format has been defined.   */  public boolean input(Instance instance) {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_NewBatch) {      resetQueue();      m_NewBatch = false;    }        if (m_CutPoints != null) {      convertInstance(instance);      return true;    }    bufferInput(instance);    return false;  }  /**   * Signifies that this batch of input to the filter is finished. If the    * filter requires all instances prior to filtering, output() may now    * be called to retrieve the filtered instances.   *   * @return true if there are instances pending output   * @exception IllegalStateException if no input structure has been defined   */  public boolean batchFinished() {    if (getInputFormat() == null) {      throw new IllegalStateException("No input instance format defined");    }    if (m_CutPoints == null) {      calculateCutPoints();      setOutputFormat();      // If we implement saving cutfiles, save the cuts here      // Convert pending input instances      for(int i = 0; i < getInputFormat().numInstances(); i++) {	convertInstance(getInputFormat().instance(i));      }    }     flushInput();    m_NewBatch = true;    return (numPendingOutput() != 0);  }  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "An instance filter that discretizes a range of numeric"      + " attributes in the dataset into nominal attributes."      + " Discretization can be either by simple binning, or by"      + " Fayyad & Irani's MDL method (the default).";  }    /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String findNumBinsTipText() {    return "Optimize bins using leave-one-out.";  }  /**   * Get the value of FindNumBins.   *   * @return Value of FindNumBins.   */  public boolean getFindNumBins() {        return m_FindNumBins;  }    /**   * Set the value of FindNumBins.   *   * @param newFindNumBins Value to assign to FindNumBins.   */  public void setFindNumBins(boolean newFindNumBins) {        m_UseMDL = false;    m_FindNumBins = newFindNumBins;  }    /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String makeBinaryTipText() {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -